首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
树(三)——自平衡二叉树(AVL)
】的更多相关文章
二叉查找树(BST)、平衡二叉树(AVL树)(只有插入说明)
二叉查找树(BST).平衡二叉树(AVL树)(只有插入说明) 二叉查找树(BST) 特殊的二叉树,又称为排序二叉树.二叉搜索树.二叉排序树. 二叉查找树实际上是数据域有序的二叉树,即对树上的每个结点,都满足其左子树上所有结点的数据域均小于或等于根结点的数据域,右子树上所有结点的数据域均大于根结点的数据域.如下图所示: 二叉查找树通常包含查找.插入.建树和删除操作. 二叉查找树的创建 对于一棵二叉查找树,其创建与二叉树的创建很类似,略有不同的是,二叉查找树,为了保证整棵树都关于根结点的大小呈左小右…
AVL树(三)之 Java的实现
概要 前面分别介绍了AVL树"C语言版本"和"C++版本",本章介绍AVL树的Java实现版本,它的算法与C语言和C++版本一样.内容包括:1. AVL树的介绍2. AVL树的Java实现3. AVL树的Java测试程序 转载请注明出处:http://www.cnblogs.com/skywang12345/p/3577479.html 更多内容: 数据结构与算法系列 目录 (01) AVL树(一)之 图文解析 和 C语言的实现(02) AVL树(二)之 C++的实…
二叉查找树、平衡二叉树(AVL)、B+树、联合索引
1. [定义] 二叉排序树(二拆查找树)中,左子树都比节点小,右子树都比节点大,递归定义. [性能] 二叉排序树的性能取决于二叉树的层数 最好的情况是 O(logn),存在于完全二叉排序树情况下,其访问性能近似于折半查找(见下图 a): 最差时候会是 O(n),比如插入的元素是有序的,生成的二叉排序树就是一个链表,这种情况下,需要遍历全部元素才行(见下图 b). 2. [定义] 平衡二叉树(AVL)中,符合二叉查找树的基础上,任意节点的两个子树的最大高度差为一. 需要左旋和右旋 3. [定义]…
Java 树结构实际应用 四(平衡二叉树/AVL树)
平衡二叉树(AVL 树) 1 看一个案例(说明二叉排序树可能的问题) 给你一个数列{1,2,3,4,5,6},要求创建一颗二叉排序树(BST), 并分析问题所在. 左边 BST 存在的问题分析: 1) 左子树全部为空,从形式上看,更像一个单链表. 2) 插入速度没有影响 3) 查询速度明显降低(因为需要依次比较), 不能发挥 BST 的优势,因为每次还需要比较左子树,其查询速度比 单链表还慢 4) 解决方案-平衡二叉树(AVL) 2 基本介绍 1) 平衡二叉树也叫平衡二叉搜索树(Self…
数据结构与算法--从平衡二叉树(AVL)到红黑树
数据结构与算法--从平衡二叉树(AVL)到红黑树 上节学习了二叉查找树.算法的性能取决于树的形状,而树的形状取决于插入键的顺序.在最好的情况下,n个结点的树是完全平衡的,如下图"最好情况"所示,此时树的高度为⌊log2 n⌋ + 1,所以时间复杂度为O(lg n)当我们将键以升序或者降序插入的时候,得到的是一棵斜树,如下图中的"最坏情况",树的高度为n,时间复杂度也变成了O(n) 在最坏情况下,二叉查找树的查找和插入效率很低.为了解决这个问题,引出了平衡二叉树(AV…
平衡二叉树AVL - 插入节点后旋转方法分析
平衡二叉树 AVL( 发明者为Adel'son-Vel'skii 和 Landis)是一种二叉排序树,其中每一个节点的左子树和右子树的高度差至多等于1. 首先我们知道,当插入一个节点,从此插入点到树根节点路径上的所有节点的平衡都可能被打破,如何解决这个问题呢? 这里不讲大多数书上提的什么平衡因子,什么最小不平衡子树,实际上让人(me)更加费解.实际上你首要做的就是先找到第一个出现不平衡的节点,也就是从插入点到root节点的路径上第一个出现不平衡的节点,即深度最深的那个节点A,对以它为根的子树做一…
伸展树(三)之 Java的实现
概要 前面分别通过C和C++实现了伸展树,本章给出伸展树的Java版本.基本算法和原理都与前两章一样.1. 伸展树的介绍2. 伸展树的Java实现(完整源码)3. 伸展树的Java测试程序 转载请注明出处:http://www.cnblogs.com/skywang12345/p/3604286.html 更多内容: 数据结构与算法系列 目录 (01) 伸展树(一)之 图文解析 和 C语言的实现(02) 伸展树(二)之 C++的实现(03) 伸展树(三)之 Java的实现 伸展树的介绍 伸展树(…
树:BST、AVL、红黑树、B树、B+树
我们这个专题介绍的动态查找树主要有: 二叉查找树(BST),平衡二叉查找树(AVL),红黑树(RBT),B~/B+树(B-tree).这四种树都具备下面几个优势: (1) 都是动态结构.在删除,插入操作的时候,都不需要彻底重建原始的索引树.最多就是执行一定量的旋转,变色操作来有限的改变树的形态.而这些操作所付出的代价都远远小于重建一棵树.这一优势在<查找结构专题(1):静态查找结构概论 >中讲到过. (2) 查找的时间复杂度大体维持在O(log(N))数量级上.可能有些结构在最差的情况下效率将…
树-二叉搜索树-AVL树
树-二叉搜索树-AVL树 树 树的基本概念 节点的度:节点的儿子数 树的度:Max{节点的度} 节点的高度:节点到各叶节点的最大路径长度 树的高度:根节点的高度 节点的深度(层数):根节点到该节点的路径长度 树的遍历 ·前序遍历:根左右(x,Tl,Tr) ·中序遍历:左根右(Tl,x,Tr) ·后序遍历:左右根(Tl,Tr,x) 树的表示法 1.父节点数组表示法 (寻找父节点O(1),寻找儿子节点O(n)) 2.儿子链表表示法 (为克服找父节点不方便,可牺牲空间换时间:) 3.左儿子右兄弟表示法…
树-二叉平衡树AVL
基本概念 AVL树:树中任何节点的两个子树的高度最大差别为1. AVL树的查找.插入和删除在平均和最坏情况下都是O(logn). AVL实现 AVL树的节点包括的几个组成对象: (01) key -- 是关键字,是用来对AVL树的节点进行排序的. (02) left -- 是左孩子. (03) right -- 是右孩子. (04) height -- 是高度.即空的二叉树的高度是0,非空树的高度等于它的最大层次(根的层次为1,根的子节点为第2层,依次类推). AVL旋转算法 AVL失衡四种形态…