PaddlePaddle推理部署】的更多相关文章

PaddlePaddle推理部署 飞桨推理产品简介 作为飞桨生态重要的一部分,飞桨提供了多个推理产品,完整承接深度学习模型应用的最后一公里. 整体上分,推理产品主要包括如下子产品 各产品在推理生态中的关系如下 用户使用飞桨推理产品的工作流 如下 获取一个飞桨的推理模型,其中有两种方法 利用飞桨训练得到一个推理模型 用 X2Paddle 工具从第三方框架(比如 TensorFlow 或者 Caffe 等)产出的模型转化 (可选)对模型进行进一步优化, PaddleSlim 工具可以对模型进行压缩,…
Paddle Inference推理部署 飞桨(PaddlePaddle)是集深度学习核心框架.工具组件和服务平台为一体的技术先进.功能完备的开源深度学习平台,已被中国企业广泛使用,深度契合企业应用需求,拥有活跃的开发者社区生态.提供丰富的官方支持模型集合,并推出全类型的高性能部署和集成方案供开发者使用. 技术优势 开发便捷的深度学习框架 飞桨深度学习框架基于编程一致的深度学习计算抽象以及对应的前后端设计,拥有易学易用的前端编程界面和统一高效的内部核心架构,对普通开发者而言更容易上手并具备领先的…
Paddle Lite端侧部署 端侧推理引擎的由来 随着深度学习的快速发展.特别是小型网络模型的不断成熟,原本应用到云端的深度学习推理,就可以放到终端上来做,比如手机.手表.摄像头.传感器.音响,也就是端智能.此外,可用于深度学习计算的硬件也有井喷之势,从Intel到Nvidia.ARM.Mali,再到国产的寒武纪等等. 相比服务端智能,端智能具有低延时.省云端资源.保护数据隐私等优势.目前端智能正逐渐变为趋势,从业界来看,它已经在AI摄像.视觉特效等场景发挥了巨大价值.深度学习推理场景中,多样…
Paddle Inference原生推理库 深度学习一般分为训练和推理两个部分,训练是神经网络"学习"的过程,主要关注如何搜索和求解模型参数,发现训练数据中的规律,生成模型.有了训练好的模型,就要在线上环境中应用模型,实现对未知数据做出推理,这个过程在AI领域叫做推理部署.用户可以选择如下四种部署应用方式之一: 服务器端高性能部署:将模型部署在服务器上,利用服务器的高性能帮助用户处理推理业务. 模型服务化部署:将模型以线上服务的形式部署在服务器或者云端,用户通过客户端请求发送需要推理的…
GPU加速:宽深度推理 Accelerating Wide & Deep Recommender Inference on GPUs 推荐系统推动了许多最流行的在线平台的参与.随着为这些系统提供动力的数据量的快速增长,数据科学家正越来越多地从更传统的机器学习方法转向高度表达的深度学习模型,以提高其建议的质量.Google的广度和深度架构已经成为解决这些问题的一种流行的模型选择,既有其对信号稀疏性的鲁棒性,也有其通过DNN线性组合分类器API在TensorFlow中的用户友好实现.虽然这些深度学习…
NVIDIA TensorRT:可编程推理加速器 一.概述 NVIDIA TensorRT是一个用于高性能深度学习推理的SDK.它包括一个深度学习推理优化器和运行时间,为深度学习推理应用程序提供低延迟和高吞吐量. 在推理过程中,基于TensorRT的应用程序执行速度比仅限CPU的平台快40倍.使用TensorRT,可以优化在所有主要框架中训练的神经网络模型,以高精度校准较低精度,最后部署到高规模数据中心.嵌入式或汽车产品平台. TensorRT建立在NVIDIA的并行编程模型CUDA的基础上,使…
PaddlePaddle源自于 2013 年百度深度学习实验室创建的 “Paddle”.当时的深度学习框架大多只支持单 GPU 运算,对于百度这样需要对大规模数据进行处理的机构,这显然远远不够,极大拖慢了研究速度.百度急需一种能够支持多 GPU.多台机器并行计算的深度学习平台.而这就导致了 Paddle 的诞生.自 2013 年以来,Paddle 一直被百度内部的研发工程师们所使用.2016 年 9 月 1 日的百度世界大会上,百度首席科学家吴恩达宣布,该公司开发的异构分布式深度学习系统 Pad…
本文转载于:子棐之GPGPU 的 TensorRT系列入门篇 学习一下加深印象 Why TensorRT 训练对于深度学习来说是为了获得一个性能优异的模型,其主要的关注点在与模型的准确度.精度等指标.推理(inference)则不一样,其没有了训练中的反向迭代过程,是针对新的数据进行预测,而我们日常生活中使用的AI服务都是推理服务.相较于训练,推理的关注点不一样,从而也给现有的技术带来了新的挑战. 需求 现有框架的局限性 影响 高吞吐率 无法处理大量和高速的数据 增加了单次推理的开销 低响应时间…
深度学习框架:GPU Deep Learning Frameworks 深度学习框架通过高级编程接口为设计.训练和验证深度神经网络提供了构建块.广泛使用的深度学习框架如MXNet.PyTorch.TensorFlow等依赖于GPU加速库如cuDNN.NCCL和DALI来提供高性能的多GPU加速训练.              开发人员.研究人员和数据科学家可以通过深度学习示例轻松访问NVIDIA优化的深度学习框架容器,这些容器针对NVIDIA gpu进行性能调整和测试.这样就不需要管理包和依赖项…
PaddlePaddle会和Python一样流行吗? 深度学习引擎最近经历了开源热.2013年Caffe开源,很快成为了深度学习在图像处理中的主要框架,但那时候的开源框架还不多.随着越来越多的开发者开始关注人工智能,AI 巨头们纷纷选择了开源的道路:2015年9月Facebook开源了用于在Torch上更快速地训练神经网络的模块,11月Google开源 TensorFlow,2016年1月微软开源CNTK.最近,百度也宣布开源深度学习引擎 PaddlePaddle. 在这场深度学习的框架之争中,…