从头学pytorch(二) 自动求梯度】的更多相关文章

PyTorch提供的autograd包能够根据输⼊和前向传播过程⾃动构建计算图,并执⾏反向传播. Tensor Tensor的几个重要属性或方法 .requires_grad 设为true的话,tensor将开始追踪在其上的所有操作 .backward()完成梯度计算 .grad属性 计算的梯度累积到.grad属性 .detach()解除对一个tensor上操作的追踪,或者用with torch.no_grad()将不想被追踪的操作代码块包裹起来. .grad_fn属性 该属性即创建Tensor…
残差网络ResNet resnet是何凯明大神在2015年提出的.并且获得了当年的ImageNet比赛的冠军. 残差网络具有里程碑的意义,为以后的网络设计提出了一个新的思路. googlenet的思路是加宽每一个layer,resnet的思路是加深layer. 论文地址:https://arxiv.org/abs/1512.03385 论文里指出,随着网络深度的增加,模型表现并没有更好,即所谓的网络退化.注意,不是过拟合,而是更深层的网络即便是train error也比浅层网络更高. 这说明,深…
DenseNet 论文传送门,这篇论文是CVPR 2017的最佳论文. resnet一文里说了,resnet是具有里程碑意义的.densenet就是受resnet的启发提出的模型. resnet中是把不同层的feature map相应元素的值直接相加.而densenet是将channel维上的feature map直接concat在一起,从而实现了feature的复用.如下所示: 注意,是连接dense block内输出层前面所有层的输出,不是只有输出层的前一层 网络结构 首先实现DenseBl…
autograd包是PyTorch中神经网络的核心部分,简单学习一下. autograd提供了所有张量操作的自动求微分功能. 它的灵活性体现在可以通过代码的运行来决定反向传播的过程, 这样就使得每一次的迭代都可以是不一样的. Variable类 autograd.Variable是这个包中的核心类. 它封装了Tensor,并且支持了几乎所有Tensor的操作. 一旦你完成张量计算之后就可以调用.backward()函数,它会帮你把所有的梯度计算好. 通过Variable的.data属性可以获取到…
自动求梯度 在深度学习中,我们经常需要对函数求梯度(gradient).PyTorch提供的autograd包能够根据输入和前向传播过程自动构建计算图,并执行反向传播.本节将介绍如何使用autograd包来进行自动求梯度的有关操作. 概念 上一节介绍的Tensor是这个包的核心类,如果将其属性.requires_grad设置为True,它将开始追踪(track)在其上的所有操作(这样就可以利用链式法则进行梯度传播了).完成计算后,可以调用.backward()来完成所有梯度计算.此Tensor的…
自动求导机制是每一个深度学习框架中重要的性质,免去了手动计算导数,下面用代码介绍并举例说明Pytorch的自动求导机制. 首先介绍Variable,Variable是对Tensor的一个封装,操作和Tensor是一样的,但是每个Variable都有三个属性:Varibale的Tensor本身的.data,对应Tensor的梯度.grad,以及这个Variable是通过什么方式得到的.grad_fn,根据最新消息,在pytorch0.4更新后,torch和torch.autograd.Variab…
关于什么是线性回归,不多做介绍了.可以参考我以前的博客https://www.cnblogs.com/sdu20112013/p/10186516.html 实现线性回归 分为以下几个部分: 生成数据集 读取数据 初始化模型参数 定义模型 定义损失函数 定义优化算法 训练模型 生成数据集 我们构造一个简单的人工训练数据集,它可以使我们能够直观比较学到的参数和真实的模型参数的区别.设训练数据集样本数为1000,输入个数(特征数)为2.给定随机生成的批量样本特征 \(\boldsymbol{X} \…
Pytorch Autograd (自动求导机制) Introduce Pytorch Autograd库 (自动求导机制) 是训练神经网络时,反向误差传播(BP)算法的核心. 本文通过logistic回归模型来介绍Pytorch的自动求导机制.首先,本文介绍了tensor与求导相关的属性.其次,通过logistic回归模型来帮助理解BP算法中的前向传播以及反向传播中的导数计算. 以下均为初学者笔记. Tensor Attributes Related to Derivation note: 以…
跟着Dive-into-DL-PyTorch.pdf从头开始学pytorch,夯实基础. Tensor创建 创建未初始化的tensor import torch x = torch.empty(5,3) print(x) 输出 tensor([[ 2.0909e+21, 3.0638e-41, -2.4612e-30], [ 4.5650e-41, 3.0638e-41, 1.7753e+28], [ 4.4339e+27, 1.3848e-14, 6.8801e+16], [ 1.8370e+…
一.计算图简介 在pytorch的官网上,可以看到一个简单的计算图示意图, 如下. import torchfrom torch.autograd import Variable x = Variable(torch.randn(1, 10)) prev_h = Variable(torch.randn(1, 20)) W_h = Variable(torch.randn(20, 20)) W_x = Variable(torch.randn(20, 10)) i2h = torch.mm(W_…