深度学习 - DL】的更多相关文章

雷锋网 - 2016 | 人工智能在深度学习领域的前世今生(原文链接) Deep Learning - DL,深度学习是机器学习的一种. 深度学习最重要的作用:表示学习 深度学习实践的四个关键要素 计算能力 算法 数据 应用场景 卷积神经网络(CNN) 最著名的深度学习模型. 参考: :…
机器学习 CNCC - 2016 | 机器学习(原文链接) Machine Learning - ML,机器学习起源于人工智能,是AI的一个分支. 机器学习的理论基础:计算学习理论 - Computational Learning Theory 计算学习理论中最重要的理论模型:PAC(Probably Approximately Correct) - 概率近似正确模型(Valiant - 图灵奖,1984)   机器学习的形态:数据 + 算法 关于机器学习的未来 技术上:一定是能有效利用GPU等…
人工智能 人工智能(Artificial Intelligence),英文缩写为AI.它是研究.开发用于模拟.延伸和扩展人的智能的理论.方法.技术及应用系统的一门新的技术科学. 人工智能是对人的意识.思维的信息过程的模拟.人工智能不是人的智能,但能像人那样思考.也可能超过人的智能. 人工智能的定义可以分为两部分,即“人工”和“智能”. 机器学习 1.    什么是机器学习 根据等人事件中判断人是否迟到了解什么是机器学习,具体参见地址:http://www.cnblogs.com/helloche…
一.深度学习(DL, Deep Learning)是机器学习(ML, Machine Learning)领域中一个新的研究方向,它被引入机器学习使其更接近于最初的目标——人工智能(AI, Artificial Intelligence). 深度学习是学习样本数据的内在规律和表示层次,这些学习过程中获得的信息对诸如文字,图像和声音等数据的解释有很大的帮助.它的最终目标是让机器能够像人一样具有分析学习能力,能够识别文字.图像和声音等数据. 深度学习是一个复杂的机器学习算法,在语音和图像识别方面取得的…
在这篇文章中,我们将回顾监督机器学习的基础知识,以及训练和验证阶段包括哪些内容. 在这里,我们将为不了解AI的读者介绍机器学习(ML)的基础知识,并且我们将描述在监督机器学习模型中的训练和验证步骤. ML是AI的一个分支,它试图通过归纳一组示例而不是接收显式指令来让机器找出如何执行任务.ML有三种范式:监督学习.非监督学习和强化学习.在监督学习中,一个模型(我们将在下面讨论)通过一个称为训练的过程进行学习,在这个过程中,它会提供示例输入和正确输出.它了解数据集示例中哪些特性映射到特定输出,然后能…
NVIDIA TensorRT高性能深度学习推理 NVIDIA TensorRT 是用于高性能深度学习推理的 SDK.此 SDK 包含深度学习推理优化器和运行时环境,可为深度学习推理应用提供低延迟和高吞吐量. 在推理过程中,基于 TensorRT 的应用程序的执行速度可比 CPU 平台的速度快 40 倍.借助 TensorRT,您可以优化在所有主要框架中训练的神经网络模型,精确校正低精度,并最终将模型部署到超大规模数据中心.嵌入式或汽车产品平台中. TensorRT 以 NVIDIA 的并行编程…
前言: 本篇文章主要讲解的是在学习人工智能之深度学习时所学到的知识和需要的环境配置(安装Anaconda3和TensorFlow2步骤详解),以及个人的心得体会,汇集成本篇文章,作为自己深度学习的总结与笔记. 内容主要是人工智能和深度学习的简介.环境配置和简单的python实例演示. 对于刚了解人工智能基本常识和具有Python基础的人,再来看本篇文章,就会对人工智能之深度学习有种豁然开朗的感觉,也是对人工智能学习的一种进阶. PS:开发工具包在文章末尾,有需要或者有问题可以评论区留言讨论 一.…
机器学习.深度学习以及人工智能正在快速演进 机器学习.深度学习和人工智能(ML.DL和AI)是彼此相关的概念,他们正在改变不知多少行业,改变其自身管理模式,同时改变做出决策的方式.显然,ML.DL和AI对于各行各业都非常重要,却也十分复杂,同时非常迅速发展着. 人工智能(Artificial Intelligence,AI)AI用来形容涉及高级计算智能的最宽泛的说法.1956年,在达特茅斯人工智能大会上,该技术被描述为:“原则上,学习的每一个方面或任何其他智能特征都可以精确描述,并且一台机器可以…
from:http://blog.sciencenet.cn/blog-830496-679604.html 深度学习(Deep Learning,DL)的相关资料总结 有人认为DL是人工智能的一场革命,貌似很NB.要好好学学. 0    第一人(提出者)     好像是由加拿大多伦多大学计算机系(Department of Computer Science ,University of Toronto) 的教授Geoffrey E. Hinton于2006年提出.    其个人网站是:    …
本文为微信公众号[深度学习大讲堂]特约稿,转载请注明出处 虚拟框架杀入 从发现问题到解决问题 半年前的这时候,暑假,我在SIAT MMLAB实习. 看着同事一会儿跑Torch,一会儿跑MXNet,一会儿跑Theano. SIAT的服务器一般是不给sudo权限的,我看着同事挣扎在编译这一坨框架的海洋中,开始思考: 是否可以写一个框架: import xx.tensorflow as tensorflow import xx.mxnet as mxnet import xx.theano as th…