zz1998_Efficient Backprop笔记】的更多相关文章

1998_Efficient Backprop笔记 A few practical tricks 1. Stochastic vs Batch learning 在最小值附近震荡的幅度与学习速率成比例,为了减小震荡,可以减小学习速率或者使用自适应的batch size. 有理论证明以下这种形式的学习速率最好: 其中t是类别数,c是一个常量,实际上,这个速率可能太快. 另一种消除噪声的方法是用mini-batch,就是开始用一个小的batch size,然后随着训练进行增加.但是如何增加和调整学习…
前言 论文“Reducing the Dimensionality of Data with Neural Networks”是深度学习鼻祖hinton于2006年发表于<SCIENCE >的论文,也是这篇论文揭开了深度学习的序幕. 笔记 摘要:高维数据可以通过一个多层神经网络把它编码成一个低维数据,从而重建这个高维数据,其中这个神经网络的中间层神经元数是较少的,可把这个神经网络叫做自动编码网络或自编码器(autoencoder).梯度下降法可用来微调这个自动编码器的权值,但是只有在初始化权值…
市面上流行着各式各样的深度学习库,它们风格各异.那么这些函数库的风格在系统优化和用户体验方面又有哪些优势和缺陷呢?本文旨在于比较它们在编程模式方面的差异,讨论这些模式的基本优劣势,以及我们从中可以学到什么经验. 我们主要关注编程模式本身,而不是其具体实现.因此,本文并不是一篇关于深度学习库相互比较的文章.相反,我们根据它们所提供的接口,将这些函数库分为几大类,然后讨论各类形式的接口将会对深度学习编程的性能和灵活性产生什么影响.本文的讨论可能不只针对于深度学习,但我们会采用深度学习的例子来分析和优…
转载请注明出处:http://www.cnblogs.com/zhangcaiwang/p/6875533.html sigmoid neuron 微小的输入变化导致微小的输出变化,这种特性将会使得学习称为可能.但是在存在感知器的网络中,这是不可能的.有可能权重或偏置(bias)的微小改变将导致感知器输出的跳跃(从0到1),从而导致此感知器后面的网络以一种难以理解的方式发生巨大的改变.解决这一问题就要使用另外一种人工神经元-sigmoid神经元(也叫逻辑神经元). sigmoid神经元的输入不只…
CS231n简介 CS231n的全称是CS231n: Convolutional Neural Networks for Visual Recognition,即面向视觉识别的卷积神经网络.该课程是斯坦福大学计算机视觉实验室推出的课程.需要注意的是,目前大家说CS231n,大都指的是2016年冬季学期(一月到三月)的最新版本. 课程描述:请允许我们引用课程主页上的官方描述如下. 计算机视觉在社会中已经逐渐普及,并广泛运用于搜索检索.图像理解.手机应用.地图导航.医疗制药.无人机和无人驾驶汽车等领…
译者注:本文智能单元首发,译自斯坦福CS231n课程笔记Neural Nets notes 3,课程教师Andrej Karpathy授权翻译.本篇教程由杜客翻译完成,堃堃和巩子嘉进行校对修改.译文含公式和代码,建议PC端阅读. 原文如下 内容列表: 梯度检查 合理性(Sanity)检查 检查学习过程 损失函数 训练集与验证集准确率 权重:更新比例 每层的激活数据与梯度分布 可视化 译者注:上篇翻译截止处 参数更新 一阶(随机梯度下降)方法,动量方法,Nesterov动量方法 学习率退火 二阶方…
译者注:本文智能单元首发,译自斯坦福CS231n课程笔记Backprop Note,课程教师Andrej Karpathy授权翻译.本篇教程由杜客翻译完成,堃堃和巩子嘉进行校对修改.译文含公式和代码,建议PC端阅读. 原文如下: 内容列表: 简介 简单表达式和理解梯度 复合表达式,链式法则,反向传播 直观理解反向传播 模块:Sigmoid例子 反向传播实践:分段计算 回传流中的模式 用户向量化操作的梯度 小结 简介 目标:本节将帮助读者对反向传播形成直观而专业的理解.反向传播是利用链式法则递归计…
前言 首先声明,以下内容绝大部分转自知乎智能单元,他们将官方学习笔记进行了很专业的翻译,在此我会直接copy他们翻译的笔记,有些地方会用红字写自己的笔记,本文只是作为自己的学习笔记.本文内容官网链接:Backprop Note 译者注:本文智能单元首发,译自斯坦福CS231n课程笔记Backprop Note,课程教师Andrej Karpathy授权翻译.本篇教程由杜客翻译完成,堃堃和巩子嘉进行校对修改.译文含公式和代码,建议PC端阅读. 原文如下: 内容列表: 简介 简单表达式和理解梯度 复…
基于3D卷积神经网络的人体行为理解(论文笔记) zouxy09@qq.com http://blog.csdn.net/zouxy09 最近看Deep Learning的论文,看到这篇论文:3D Convolutional Neural Networks for Human Action Recognition.比较感兴趣是CNN是怎么应用于行为理解的,所以就看看.这篇论文发表在TPAMI2013.它基本上没有公式的,论文倾于从论述角度描述它的基本方法和实现效果.另外,对于怎么去训练也没有具体的…
CS231n的课后作业非常的好,这里记录一下自己对作业一些笔记. 一.第一个是KNN的代码,这里的trick是计算距离的三种方法,核心的话还是python和machine learning中非常实用的向量化操作,可以大大的提高计算速度. import numpy as np class KNearestNeighbor(object):#首先是定义一个处理KNN的类 """ a kNN classifier with L2 distance """…