采用三级缓存:nginx本地缓存+redis分布式缓存+tomcat堆缓存的多级缓存架构 时效性要求非常高的数据:库存 一般来说,显示的库存,都是时效性要求会相对高一些,因为随着商品的不断的交易,库存会不断的变化 时效性要求不高的数据:商品的基本信息(名称.颜色.版本.规格参数,等等) 商品价格/库存等时效性要求高的数据,而且种类较少,采取相关的服务系统每次发生了变更的时候,直接采取数据库和redis缓存双写的方案,这样缓存的时效性最高 商品基本信息等时效性不高的数据,而且种类繁多,来自多种不同…
*****************开篇介绍**************** ----------------------------------------------------------------------------------------------------------------------- 三个重要的标准: ---大型缓存架构中需要首先说一下: 海量数据:支持海量数据缓存,支持大规模数据: 高并发:在亿级QPS的场景下,可以做到满足业务需求: 高可用:表示redis可以做…
[原文]https://www.toutiao.com/i6594307974817120782/ 摘要: 对于高并发架构,毫无疑问缓存是最重要的一环,对于大量的高并发,可以采用三层缓存架构来实现,nginx+redis+ehcache Nginx 对于中间件nginx常用来做流量的分发,同时nginx本身也有自己的缓存(容量有限),我们可以用来缓存热点数据,让用户的请求直接走缓存并返回,减少流向服务器的流量 一.模板引擎 通常我们可以配合使用freemaker/velocity等模板引擎来抗住…
redis系列之数据库与缓存数据一致性解决方案 数据库与缓存读写模式策略 写完数据库后是否需要马上更新缓存还是直接删除缓存? (1).如果写数据库的值与更新到缓存值是一样的,不需要经过任何的计算,可以马上更新缓存,但是如果对于那种写数据频繁而读数据少的场景并不合适这种解决方案,因为也许还没有查询就被删除或修改了,这样会浪费时间和资源 (2).如果写数据库的值与更新缓存的值不一致,写入缓存中的数据需要经过几个表的关联计算后得到的结果插入缓存中,那就没有必要马上更新缓存,只有删除缓存即可,等到查询的…
简单的场景: 直接使用 1. 使用Cache Aside pattern 读取的时候,先读取缓存中是否有数据,缓存中没有数据,再去数据库中进行查询,查询出来以后,然后再存入到缓存中 更新的时候,先删除缓存库,然后再更新数据库. 为什么是先删除缓存,然后再更新数据库? 因为有可能存入到缓存中的是一个经过复杂运算的数值. 我更新数据库的时候,并不是每次都要将这个经过复杂运算的值取出来,所以使用一个lazy的加载思想,先删除缓存库,然后等我什么时候需要,什么时候再进行加载.   在高并发的情况下,出现…
亿级流量电商详情页系统的大型高并发与高可用缓存架构实战 完整高清含源码,需要课程的联系QQ:2608609000 1[免费观看]课程介绍以及高并发高可用复杂系统中的缓存架构有哪些东西2[免费观看]基于大型电商网站中的商品详情页系统贯穿的授课思路介绍3小型电商网站的商品详情页的页面静态化架构以及其缺陷11分钟4大型电商网站的异步多级缓存构建+nginx数据本地化动态渲染的架构9分钟5能够支撑高并发+高可用+海量数据+备份恢复的redis的重要性5分钟6从零开始在虚拟机中一步一步搭建一个4个节点的C…
转载自:https://blog.csdn.net/lzhcoder/article/details/79469123 https://blog.csdn.net/u013374645/article/details/91409150 1.最经典的缓存+数据库读写的模式,cache aside pattern 1.1.Cache Aside Pattern (1)读的时候,先读缓存,缓存没有的话,那么就读数据库,然后取出数据后放入缓存,同时返回响应 (2)更新的时候,先删除缓存,然后再更新数据库…
1.缓存定义 高速数据存储层,提高程序性能 2.为什么要用缓存(读多写少,高并发) 1.提高读取吞吐量 2.提升应用程序性能 3.降低数据库成本 4.减少后端负载 5.消除数据库热点 6.可预测的性能 3.缓存分类 3.1.单机缓存(localCache) 实现方案 1.基于JSR107规范自研(了解即可): 1.Java Caching定义了5个核心接口,分别是CachingProvider, CacheManager, Cache, Entry 和 Expiry. 2.CachingProv…
一.缓存 当系统的并发量上来了,如果我们频繁地去访问数据库,那么会使数据库的压力不断增大,在高峰时甚至可以出现数据库崩溃的现象.所以一般我们会使用缓存来解决这个数据库并发访问问题,用户访问进来,会先从缓存里查询,如果存在则返回,如果不存在再从数据库里查询,最后添加到缓存里,然后返回给用户,当然了,接下来又能使用缓存来提供查询功能. 而缓存,一般我们可以分为本地缓存和分布式缓存. 常用的本地缓存有 ehcache.guava cache,而我们一般都是使用 ehcache,毕竟他是纯 Java 的…
一.缓存雪崩 回顾一下我们为什么要用缓存(Redis):减轻数据库压力或尽可能少的访问数据库. 在前面学习我们都知道Redis不可能把所有的数据都缓存起来(内存昂贵且有限),所以Redis需要对数据设置过期时间,并采用的是惰性删除+定期删除两种策略对过期键删除.Redis对过期键的策略+持久化 如果缓存数据设置的过期时间是相同的,并且Redis恰好将这部分数据全部删光了.这就会导致在这段时间内,这些缓存同时失效,全部请求到数据库中. 1.1.什么是缓存雪崩 Redis挂掉了,请求全部走数据库.…