Luogu P1297 [国家集训队]单选错位】的更多相关文章

P1297 [国家集训队]单选错位 题目背景 原 <网线切割>请前往P1577 题目描述 gx和lc去参加noip初赛,其中有一种题型叫单项选择题,顾名思义,只有一个选项是正确答案.试卷上共有n道单选题,第i道单选题有ai个选项,这ai个选项编号是1,2,3,…,ai,每个选项成为正确答案的概率都是相等的.lc采取的策略是每道题目随机写上1-ai的某个数作为答案选项,他用不了多少时间就能期望做对 \sum_{i=1}^n \frac{1}{a_i}∑i=1n​ai​1​ 道题目.gx则是认认真…
题目链接 题解: 单独考虑每一道题目对答案的贡献. 设$g_i$表示gx在第$i$道题目的答案是否正确(1表示正确,0表示不正确),则$P(g_i=1)$表示gx在第$i$道题目的答案正确的概率. 我们要求的就是$\sum_{i=1}^{n} P(g_i=1)\times 1$. 那么我们该如何求解$P(g_i=1)$呢? 首先,结合题目可以得出以下结论: 设$s_i$为第i道题目的正确答案. 若$g_i=1$,则有$s_i=s_{i-1}$.特别地,若$g_1=1$,则有$s_n=s_1$.…
P1297 [国家集训队]单选错位 期望入门 我们考虑涂到第$i$道题时的情况 此时题$i$答案有$a[i]$种,我们可能涂$a[i+1]$种 分类讨论: 1.$a[i]>=a[i+1]$: 可能涂到答案的概率为$(a[i+1]/a[i])*(1/a[i+1])=1/a[i]$,贡献为1 没涂到的概率为$1-1/a[i]$,贡献为0 期望值:$1*(1/a[i])+0*(1-1/a[i])=1/a[i]$ 2.$a[i]<a[i+1]$: 可能涂到答案的概率为$(a[i]/a[i+1])*(1…
题目背景 原 <网线切割>请前往P1577 题目描述 gx和lc去参加noip初赛,其中有一种题型叫单项选择题,顾名思义,只有一个选项是正确答案.试卷上共有n道单选题,第i道单选题有ai个选项,这ai个选项编号是1,2,3,…,ai,每个选项成为正确答案的概率都是相等的.lc采取的策略是每道题目随机写上1-ai的某个数作为答案选项,他用不了多少时间就能期望做对 ∑i=1n1ai\sum_{i=1}^n \frac{1}{a_i}∑i=1n​ai​1​ 道题目.gx则是认认真真地做完了这n道题目…
考虑第 iii 位, 那么当前共有 a[i]a[i]a[i] 种选项,那么当前选项正确的情况就是下一个被误填的答案与当前答案相同.换句话说,当前答案一共有 a[i]a[i]a[i] 种可能,而下一个答案有 a[i+1]a[i + 1]a[i+1]种可能,那么总共有 a[i]∗a[i+1]a[i]*a[i+1]a[i]∗a[i+1] 种可能,其中,我们要去 min(a[i],a[i+1])min(a[i], a[i+1])min(a[i],a[i+1]) 作为分子(想一想,为什么).故每种答案的贡…
单选错位 [问题描述] gx和lc去参加noip初赛,其中有一种题型叫单项选择题,顾名思义,只有一个选项是正确答案.试卷上共有n道单选题,第i道单选题有ai个选项,这ai个选项编号是1,2,3,…,ai,每个选项成为正确答案的概率都是相等的.lc采取的策略是每道题目随机写上1-ai的某个数作为答案选项,他用不了多少时间就能期望做对道题目.gx则是认认真真地做完了这n道题目,可是等他做完的时候时间也所剩无几了,于是他匆忙地把答案抄到答题纸上,没想到抄错位了:第i道题目的答案抄到了答题纸上的第i+1…
题目链接 如题目中的公式,我们只要把做对每个题的概率加起来就可以了(乘个1就是期望). 做对第i道题的概率 \[P_i=\frac{1}{max(a_{i-1},a_i)}\] 原式是 \(P_i=\frac{min(a_{i-1},a_i)}{a_{i-1}\times a_i}\),化简后得到上式. 例:假设第i-1道有3个选项,第i道有5个选项,暴力一点,那么做对就是从3个中选1个和从5个中选1个相同的概率, 概率为 \(\frac{1}{3}\times\frac{1}{5}+\frac…
题目链接 luogu P2757 [国家集训队]等差子序列 题解 线段树好题 我选择暴力 代码 // luogu-judger-enable-o2 #include<cstdio> inline int read() { int x = 0,f = 1; char c = getchar(); while(c < '0' || c > '9')c = getchar(); while(c <= '9' && c >= '0') x = x * 10 +…
题目链接 luogu P2619 [国家集训队2]Tree I 题解 普通思路就不说了二分增量,生成树check 说一下坑点 二分时,若黑白边权有相同,因为权值相同优先选白边,若在最有增量时出现黑白等权边则更新出 > 和 = 最小值等价,那么不会更新到 = 情况, 因为等价,那么处理时只需看做把等价的黑白两边交换即可 需要每次直接减去 增量 * need 的价值 代码 #include<cstdio> #include<algorithm> const int maxn =…
题面 传送门:洛咕 Solution 调到自闭,我好菜啊 为了方便讨论,以下式子\(m>=n\) 为了方便书写,以下式子中的除号均为向下取整 我们来颓柿子吧qwq 显然,题目让我们求: \(\large \sum_{i=1}^n\sum_{j=1}^m lcm(i,j)\) \(lcm\)没法玩,我们转到\(gcd\)形式: \(\large \sum_{i=1}^n\sum_{j=1}^m \frac{i*j}{gcd(i,j)}\) 根据套路,我们去枚举\(gcd\) \(\large \s…