题目描述 传送门 分析 首先判掉 \(INF\) 的情况 第一种情况就是不能从 \(s\) 走到 \(t\) 第二种情况就是从 \(s\) 出发走到了出度为 \(0\) 的点,这样就再也走不到 \(t\) 然后我们去考虑 \(60\) 分的做法 我们设 \(dp[u]\) 为当前在点 \(u\) 走到点 \(t\) 的期望步数 那么就有 \(dp[u]=\sum_{u->v}^v((dp[v]+1) \times \frac{1}{rd[u]})\) 移项之后就变成了 \(dp[u]-\sum_…
题目 Morenan被困在了一个迷宫里.迷宫可以视为N个点M条边的有向图,其中Morenan处于起点S,迷宫的终点设为T.可惜的是,Morenan非常的脑小,他只会从一个点出发随机沿着一条从该点出发的有向边,到达另一个点.这样,Morenan走的步数可能很长,也可能是无限,更可能到不了终点.若到不了终点,则步数视为无穷大.但你必须想方设法求出Morenan所走步数的期望值. 输入格式 第1行4个整数,N,M,S,T 第[2, M+1]行每行两个整数o1, o2,表示有一条从o1到o2的边. 输出…
2337: [HNOI2011]XOR和路径 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1170  Solved: 683 Description Input Output Sample Input Sample Output HINT Source Day2 [分析] 这题终于自己打出来了高斯消元.没有对比代码了... 很心酸啊..调试的时候是完全没有方向的,高斯消元还要自己一步步列式子然后消元解..[为什么错都不知道有时候 这题显然是不能…
应该是一个入门级别的题目. 但是有几个坑点. 1. 只选择x能到达的点作为guass中的未知数. 2. m可能大于n,所以在构建方程组时未知数的系数不能直接等于,要+= 3.题意貌似说的有问题,D为-1的时候,和题目说的不一样. // // main.cpp // hdu4418 // // Created by New_Life on 16/8/9. // Copyright © 2016年 chenhuan001. All rights reserved. // //高斯消元模板: 浮点数…
题意 题目链接 Sol 设\(f[i]\)表示从\(i\)走到\(T\)的期望步数 显然有\(f[x] = \sum_{y} \frac{f[y]}{deg[x]} + 1\) 证明可以用全期望公式. 那么我们可以把每个强联通分量里的点一起高斯消元,就做完了. (warning:BZOJ没有C++11,但是下面的代码是正确的,至于为什么可以点题目链接....) #include<bits/stdc++.h> using namespace std; const int MAXN = 1e6 +…
数据范围太大不能直接高斯消元, tarjan缩点然后按拓扑逆序对每个强连通分量高斯消元就可以了. E(u) = 1 + Σ E(v) / degree(u) 对拍时发现网上2个程序的INF判断和我不一样(他们2个的INF判断也不一样).....然而都A掉了....我觉得应该是他们写错了,我的做法应该没错的(正反2遍dfs,GDOI2015day1t1大冒险)(求打脸 -----------------------------------------------------------------…
题目链接 一个点到达终点的期望步数 \(E_i=\sum_{(i,j)\in G}\frac{E_j+1}{out[i]}\),\(out[i]\)为点\(i\)的出度. 那么对于一个DAG可以直接在反向图上拓扑+DP求解. 于是对于环内高斯消元,缩点后拓扑+DP. 无解(无限步)的情况: 起点到不了终点:起点能够走到一个环,且在这个环内无法走到终点(走不出去). ps:1.T连出的边不能计算. 2.期望的计算式有个+1! 3.建反向边! 4.重边 注: 如果\(E_i\)表示从起点到点\(i\…
首先求出SCC缩点,E[T]=0,按拓扑序计算 对于无边连出的块,如果不是T所在块,则称该块是死路块 对于一个块,如果其中的点连出的边是死路块,则它也是死路块 否则对于每块进行高斯消元求出期望 如果S点所在块为死路块,则答案为INF #include<cstdio> #include<cmath> const int N=10010,M=1000010; int n,m,x,y,i,j,S,T; int g[3][N],nxt[3][M],v[3][M],ed,G[N],NXT[N…
Description 一个无向连通图,顶点从1编号到N,边从1编号到M.小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分数.当小Z 到达N号顶点时游走结束,总分为所有获得的分数之和.现在,请你对这M条边进行编号,使得小Z获得的总分的期望值最小. Input 第一行是正整数N和M,分别表示该图的顶点数 和边数,接下来M行每行是整数u,v(1≤u,v≤N),表示顶点u与顶点v之间存在一条边. 输入保…
题目传送门 https://loj.ac/problem/2542 题解 肯定一眼 MinMax 容斥吧. 然后问题就转化为,给定一个集合 \(S\),问期望情况下多少步可以走到 \(S\) 中的点. 考虑 dp 的话,令 \(dp[x]\) 表示从 \(x\) 开始走的答案. 如果 \(x \in S\),那么 \(dp[x] = 0\): 否则,\(dp[x] = 1 + \frac{\sum\limits_{(x, y) \in T} dp[y]}{deg_x}\). 这个东西直接树上高斯…