AI学习---数据读取&神经网络】的更多相关文章

AI学习---数据读取&神经网络 fa…
数据IO操作 TF支持3种文件读取:    1.直接把数据保存到变量中    2.占位符配合feed_dict使用    3. QueueRunner(TF中特有的) 文件读取流程 文件读取流程(多线程 + 队列)1)构造文件名队列(先读取文件名到队列,方便快速读取文件)    file_queue = tf.train.string_input_producer(string_tensor,shuffle=True)2)读取与解码(读取器根据文件名读取数据,以一个样本为一个单位进行读取,返回一…
Tensorflow数据读取方式主要包括以下三种 Preloaded data:预加载数据 Feeding: 通过Python代码读取或者产生数据,然后给后端 Reading from file: 通过TensorFlow队列机制,从文件中直接读取数据 前两种方法比较基础而且容易理解,在Tensorflow入门教程.书本中经常可以见到,这里不再进行介绍. 在介绍Tensorflow第三种读取数据方法之前,介绍以下有关队列相关知识 Queue(队列) 队列是用来存放数据的,并且tensorflow…
目录 前言 第一周(深度学习引言) 第二周(神经网络的编程基础) 第三周(浅层神经网络) 第四周(深层神经网络) 前言 目标: 掌握神经网络的基本概念, 学习如何建立神经网络(包含一个深度神经网络),以及如何在数据上面训练他们,最后将用一个深度神经网络进行辨认猫. (1)了解深度学习的概念 (2)了解神经网络的结构,使用算法并高效地实现 (3)结合神经网络的算法实现框架,编写实现一个隐藏层神经网络 (4)建立一个深层的神经网络(一般把层数大于等于3的神经网络称为深层神经网络) 第一周(深度学习引…
[TOC] 马里奥AI实现方式探索 --神经网络+增强学习 儿时我们都曾有过一个经典游戏的体验,就是马里奥(顶蘑菇^v^),这次里约奥运会闭幕式,日本作为2020年东京奥运会的东道主,安倍最后也已经典的马里奥形象出现.平时我们都是人来玩马里奥游戏,能否可以让马里奥智能的自己闯关个呢?OK,利用人工智能的相关算法来进行自动化通关一直是一个热门的话题,最近最火的相关东东就是传说中的alphaGo啦.而在游戏的自动化测试当中,这种算法也是非常实用的,可以大量的减少测试人力成本. 首先,对于实现马里奥A…
JSON数据由 JSONObject.JSONArray.key_value 组合而成.通常来说,JSONObject 可以包含 JSONObject.JSONArray.key_value:JSONArray只能包含 JSONObject 的列表:key_value 为最小单元,且只能在 JSONObject 中获取.获取 JSONObject.JSONArray.key_value 三种数据的方法如下所示: 获取 JSONObject:JSONObject.getJSONObject(key…
Padding 在卷积操作中,过滤器(又称核)的大小通常为奇数,如3x3,5x5.这样的好处有两点: 在特征图(二维卷积)中就会存在一个中心像素点.有一个中心像素点会十分方便,便于指出过滤器的位置. 在没有padding的情况下,经过卷积操作,输出的数据维度会减少.以二维卷积为例,输入大小 \(n\times n\),过滤器大小\(f\times f\),卷积后输出的大小为\((n-f+1)\times(n-f+1)\). 为了避免这种情况发生,可以采取padding操作,padding的长度为…
一.动机 我们已经学了很多在 Spark 中对已分发的数据执行的操作.到目前为止,所展示的示例都是从本地集合或者普通文件中进行数据读取和保存的.但有时候,数据量可能大到无法放在一台机器中,这时就需要探索别的数据读取和保存的方法了. Spark 及其生态系统提供了很多可选方案.本章会介绍以下三类常见的数据源. • 文件格式与文件系统:对于存储在本地文件系统或分布式文件系统(比如 NFS.HDFS.Amazon S3 等)中的数据,Spark 可以访问很多种不同的文件格式,包括文本文件.JSON.S…
本文转自:https://zhuanlan.zhihu.com/p/27238630 在学习tensorflow的过程中,有很多小伙伴反映读取数据这一块很难理解.确实这一块官方的教程比较简略,网上也找不到什么合适的学习材料.今天这篇文章就以图片的形式,用最简单的语言,为大家详细解释一下tensorflow的数据读取机制,文章的最后还会给出实战代码以供参考. 一.tensorflow读取机制图解 首先需要思考的一个问题是,什么是数据读取?以图像数据为例,读取数据的过程可以用下图来表示: 假设我们的…
作者:szx_spark 1. Padding 在卷积操作中,过滤器(又称核)的大小通常为奇数,如3x3,5x5.这样的好处有两点: 在特征图(二维卷积)中就会存在一个中心像素点.有一个中心像素点会十分方便,便于指出过滤器的位置. 在没有padding的情况下,经过卷积操作,输出的数据维度会减少.以二维卷积为例,输入大小 \(n\times n\),过滤器大小\(f\times f\),卷积后输出的大小为\((n-f+1)\times(n-f+1)\). 为了避免这种情况发生,可以采取paddi…