原文链接:https://arxiv.org/pdf/1511.00561.pdf github(tensorflow):https://github.com/aizawan/segnet 基于SegNet的钢铁分割实验:https://github.com/fourmi1995/IronSegExprement-SegNet 摘要 Segnet是用于进行像素级别图像分割的全卷积网络,分割的核心组件是一个encoder 网络,及其相对应的decoder网络,后接一个象素级别的分类网络.encod…
论文原址:https://arxiv.org/abs/1904.01355 github: tinyurl.com/FCOSv1 摘要 本文提出了一个基于全卷积的单阶段检测网络,类似于语义分割,针对每个像素进行预测.RetinaNet,SSD,YOLOv3,Faster R-CNN都依赖于预定义的anchor boxes.本文的FCOX是anchor free ,proposal free类型的检测器.将预定义的anchors进行移除,进而减少了大量的计算以及内存占用,同时,anchor中的超参…
源文网址:https://arxiv.org/abs/1707.03718 tensorflow代码:https://github.com/luofan18/linknet-tensorflow 基于Linknet的分割实验:https://github.com/fourmi1995/IronSegExperiment-LinkNet 摘要 像素级分割不仅准确率上有要求,同时需要应用的实际中实时的应用中.虽然精度上较高,但参数与操作上的数量都是十分巨大的.本文提出的网络结构参数并未增加.只使用了…
论文链接:https://arxiv.org/pdf/1611.09326.pdf tensorflow代码:https://github.com/HasnainRaz/FC-DenseNet-TensorFlow 实验代码:https://github.com/fourmi1995/IronSegExperiment-FC-DenseNet.git 摘要 经典的分割结构大致由以下部分构成:(1)用于提取粗略特征的下采样过程.(2)可训练的上采样通道,用于将模型的输出至输入图片大小的分辨率.(3…
Introduction (1)Motivation: 当前CNN无法提取图像序列的关系特征:RNN较为忽视视频序列前期的帧信息,也缺乏对于步态等具体信息的提取:Siamese损失和Triplet损失缺乏对label信息的考虑(???). (2)Contribution: 提出一个新的端到端网络框架,称为 CNN and RNN Fusion(CRF),结合了Siamese.Softmax 联合损失函数.分别对全身和身体局部进行模型训练,获得更有区分度的特征表示. Method (1)框架: (…
[论文阅读笔记] Structural Deep Network Embedding 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问题 现有的表示学习方法大多采用浅层模型,这可能不能捕获具有高度非线性的网络结构,导致学习到一个局部最优的节点向量表示. (2) 主要贡献 Contribution: 提出一个半监督的深度模型SDNE,包含多个非线性层,同时优化一阶和二阶相似度的目标函数来保留原始网络的局部和全局网络结构,因此可能能够捕获高度非线性的网络结构. (3) 算法原理 简单…
论文阅读笔记(十七)ICCV2017的扩刊(会议论文[传送门]) 改进部分: (1)惩罚函数:原本由两部分组成的惩罚函数,改为只包含 Sequence Cost 函数: (2)对重新权重改进: ① Positive Re-Weighting: 其中 若太大,则选择的样本标签的可信度小:若太小,则样本数量不足以进行矩阵学习,因此设置如下的: 其中,σ为 [0, 1],如果 σ = 1,则说明充分相信样本估计的可信度,反之设置为 σ = 0. ② Negative Re-Weighting: 对于所…
这是一个导读,可以快速找到我记录的关于人工智能(深度学习)加速芯片论文阅读笔记. ISSCC 2017 Session14 Deep Learning Processors: ISSCC 2017关于Deep Learning Processors的Slides笔记,主要参考了[1]中的笔记,自己根据paper和slides读一遍,这里记一下笔记,方便以后查阅. 14.1 A 2.9TOPS/W Deep Convolutional Neural Network SoC in FD-SOI 28…
论文源址:https://arxiv.org/abs/1511.07122 tensorflow Github:https://github.com/ndrplz/dilation-tensorflow 摘要 该文提出了空洞卷积模型,在不降低分辨率的基础上聚合图像中不同尺寸的上下文信息,同时,空洞卷积扩大感受野的范围. 介绍 语义分割具有一定的挑战性,因为要进行像素级的分类,同时,要考虑不同尺寸大小的上下文信息的推理.通过卷积外加反向传播的学习算法,使分类的准确率得到大幅度的提升.由原始的分类到…
论文源址:https://arxiv.org/abs/1611.06612 tensorflow代码:https://github.com/eragonruan/refinenet-image-segmentation 摘要 RefineNet是一种生成式的多路径增强网络,在进行高分辨率的预测时,借助远距离的残差连接,尽可能多的利用下采样过程中的所有信息.这样,通过前期卷积操作得到的细粒度特征可以增强能够获得图像更高层次信息更深的网络.RefineNet的组件基于残差连接,可以进行端到端的训练.…