上一次我们讲到了边双,这次我们来看点双. 说实话来说,点双比边双稍微复杂一些: 学完边双,我们先看一道题 第一问都不用说了吧,多余的道路,明显的割边. 是不是首先想到用边双,但是我们来看一个图: 有点丑,但是凑活看吧. 它是一个边双,但是!!!!它竟然没有冲突的边!!! 此时我们就要用点双了(是不是想打死我,竟然没讲,先坑人) 先看概念 都说概念是非常重要的,但是概念似乎有点笼统,可以附图解说 点双的一大特点是它可以重复用点,而那个点就是割点,而我们的缩点操作也是用割点连接各个点双的. 那么我们…
本来应该先说强连通分量,但是有一定的分配,所以这个在下一篇博客将会见到. 这个本想连点连通分量一起讲,但是量有点大,所以我就分两步讲. 我们先看定义 再来看看图解 很容易就能发现,只要将割边断掉,然后剩下的连通块就是我们的边双,那么我们的代码就可以yy出来了,先跑一遍Tarjan求割点,然后在去跑dfs,将每一个边双染色,那么就可以了,而染色操作,以便于我们后面好缩点. 我们来看模板 void Tarjan(int x,int fa){ low[x]=dfn[x]=++t; for(int i=…
所谓割点(顶)割边,我们引进一个概念 割点:删掉它之后(删掉所有跟它相连的边),图必然会分裂成两个或两个以上的子图. 割边(桥):删掉一条边后,图必然会分裂成两个或两个以上的子图,又称桥. 这样大家就应该能简单理解(怎么可能)割点割边了. 所以我们再来看一个图 这样大家就能明白了吧(明白是明白了,但是要他干嘛(自动忽略))到后面会明白的. 然后怎么求,这是一个问题,直接想法是搜索,枚举每一个点,然后再去检验是否联通,这样的复杂度应该是O(n2),很显然很不优秀,万一数据是1e5以上不就凉凉了吗.…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2460 思路:题目的意思是要求在原图中加边后桥的数量,首先我们可以通过Tarjan求边双连通分量,对于边(u,v),如果满足low[v]>dfn[u],则为桥,这样我们就可以知道图中桥的数目了.对于每一次query,可以考虑dfs树,树边肯定是桥,然后连上u,v这条边之后,就会形成一个环,这样环内的边就不是割边了,所以只要找到u,v的LCA,把这个路径上的桥标记为否就可以了. http://paste…
[Codeforces 555E]Case of Computer Network(Tarjan求边-双连通分量+树上差分) 题面 给出一个无向图,以及q条有向路径.问是否存在一种给边定向的方案,使得这q条路径都能被满足.(如果有一条边是从a->b),而经过它的路径是从b->a,那么久不满足).只需要判断,不用输出方案. 分析 对于一个有向环,显然它可以允许各个方向的路径通过.所以我们只要把无向图里的边-双联通分量建成环,然后就不用考虑了.影响答案的只有桥. 所以我们求出所有桥,然后缩点,把图…
最近在学图论相关的内容,阅读这篇博客的前提是你已经基本了解了Tarjan求点双. 由割点的定义(删去这个点就可使这个图不连通)我们可以知道,坍塌的挖煤点只有在割点上才会使这个图不连通,而除了割点的其他点上则无可厚非,所以我们只需要考虑这个图的割点的情况. 那么我们就可以求出所有的点双连通分量, 如果这个点双仅有一个割点,那么这个割点坍塌后这个点双就被"孤立"了,所以需要在这个点双里设置一个救援出口. 那么这个点双如果包含多个割点呢?假设它的其中一个割点坍塌了,它还可以从另外几个割点出去…
概述 在一个无向图中,若任意两点间至少存在两条“点不重复”的路径,则说这个图是点双连通的(简称双连通,biconnected) 在一个无向图中,点双连通的极大子图称为点双连通分量(简称双连通分量,Biconnected Component,BCC) 性质 任意两点间至少存在两条点不重复的路径等价于图中删去任意一个点都不会改变图的连通性,即BCC中无割点 若BCC间有公共点,则公共点为原图的割点 无向连通图中割点一定属于至少两个BCC,非割点只属于一个BCC 算法 在Tarjan过程中维护一个栈,…
声明:图自行参考割点和桥QVQ 双连通分量 如果一个无向连通图\(G=(V,E)\)中不存在割点(相对于这个图),则称它为点双连通图 如果一个无向连通图\(G=(V,E)\)中不存在割边(相对于这个图),则称它为边双连通图 无向图的极大点双连通子图称为点双连通分量,简称\(v-DCC\) 无向图的极大边双连通子图称为边双连通分量,简称\(e-DCC\) 如果称一个双连通子图\(G'=(V',E')\)极大,当且仅当不存在\(G\)的另外一个子图\(G''=(V'',E'')\neq G'\),使…
题目链接:http://codeforces.com/problemset/problem/118/E 思路:首先要判断图是否是边双连通,这个Tarjan算法可以判断,若low[v] > dfn[u],则说明边(u,v)是桥,从而这个图不是边双连通,然后发现在判断的时候已经访问了所有的顶点,顺便加入就可以了. #include <iostream> #include <cstdio> #include <cstring> #include <algorith…
题目描述 Description 给定由 n 个点 m 条边组成的无向连通图,保证没有重边和自环. 你需要找出所有边,满足这些边恰好存在于一个简单环中.一个环被称为简单环,当且仅当它包含的所有点都只在这个环中被经过了一次. 注意到这些边可能有很多条,你只需要输出他们编号的异或和即可. Input 第一行两个数 n, m. 接下来 m 行,每行两个数 ai , bi,表示第 i 条边连接了 ai , bi. Output 输出一个数,表示所有满足条件的边的编号的异或和. Sample Input…