[Deep-Learning-with-Python]GAN图片生成】的更多相关文章

生成式深度学习 机器学习模型能够对图像.音乐和故事的统计潜在空间(latent space)进行学习,然后从这个空间中采样(sample),创造出与模型在训练数据中所见到的艺术作品具有相似特征的新作品 使用 LSTM 生成文本 生成序列数据 用深度学习生成序列数据的通用方法,就是使用前面的标记作为输入,训练一个网络(通常是循环神经网络或卷积神经网络)来预测序列中接下来的一个或多个标记.例如,给定输入the cat is on the ma,训练网络来预测目标 t,即下一个字符.与前面处理文本数据…
本节介绍基于Keras的CNN 卷积神经网络接收形状为 (image_height, image_width, image_channels)的输入张量(不包括批量维度),宽度和高度两个维度的尺寸通常会随着网络加深而变小.通道数量由传入 Conv2D 层的第一个参数所控制 用卷积神经网络对 MNIST 数字进行分类Demo from keras import layers from keras import models from keras.datasets import mnist from…
深度学习基础 Python 的 Keras 库来学习手写数字分类,将手写数字的灰度图像(28 像素 ×28 像素)划分到 10 个类别 中(0~9) 神经网络的核心组件是层(layer),它是一种数据处理模块,它从输入数据中提取表示,紧接着的一个例子中,将含有两个Dense 层,它们是密集连接(也叫全连接)的神经层,最后是一个10路的softmax层,它将返回一个由 10 个概率值(总和为 1)组成的数组.每个概率值表示当前数字图像属于 10 个数字类别中某一个的概率 损失函数(loss fun…
 Conclusions about Deep Learning with Python  Last night, I start to learn the python for deep learning research. It really confused me at the beginning. So, here is some conclusions about the hard beginning progress. If you have some more excellent…
Keras 函数式编程 利用 Keras 函数式 API,你可以构建类图(graph-like)模型.在不同的输入之间共享某一层,并且还可以像使用 Python 函数一样使用 Keras 模型.Keras 回调函数和 TensorBoard 基于浏览器的可视化工具,让你可以在训练过程中监控模型 对于多输入模型.多输出模型和类图模型,只用 Keras 中的 Sequential模型类是无法实现的.这时可以使用另一种更加通用.更加灵活的使用 Keras 的方式,就是函数式API(functional…
本节介绍循环神经网络及其优化 循环神经网络(RNN,recurrent neural network)处理序列的方式是,遍历所有序列元素,并保存一个状态(state),其中包含与已查看内容相关的信息.在处理两个不同的独立序列(比如两条不同的 IMDB 评论)之间,RNN 状态会被重置,因此,你仍可以将一个序列看作单个数据点,即网络的单个输入.真正改变的是,数据点不再是在单个步骤中进行处理,相反,网络内部会对序列元素进行遍历,RNN 的特征在于其时间步函数 Keras 中的循环层 from ker…
本节讲深度学习用于文本和序列 用于处理序列的两种基本的深度学习算法分别是循环神经网络(recurrent neural network)和一维卷积神经网络(1D convnet) 与其他所有神经网络一样,深度学习模型不会接收原始文本作为输入,它只能处理数值张量.文本向量化(vectorize)是指将文本转换为数值张量的过程.它有多种实现方法 将文本分割为单词,并将每个单词转换为一个向量 将文本分割为字符,并将每个字符转换为一个向量 提取单词或字符的 n-gram,并将每个 n-gram 转换为一…
本节讲卷积神经网络的可视化 三种方法 可视化卷积神经网络的中间输出(中间激活) 有助于理解卷积神经网络连续的层如何对输入进行变换,也有助于初步了解卷积神经网络每个过滤器的含义 可视化卷积神经网络的过滤器 有助于精确理解卷积神经网络中每个过滤器容易接受的视觉模式或视觉概念 可视化图像中类激活的热力图 有助于理解图像的哪个部分被识别为属于某个类别,从而可以定位图像中的物体 可视化中间激活 是指对于给定输入,展示网络中各个卷积层和池化层输出的特征图,这让我们可以看到输入如何被分解为网络学到的不同过滤器…
1. Welcome 主要讲四部分内容: non-personized systems popularity: 基于流行度或者最大利益化的推荐. 缺点也明显:你可能在特殊地方有些特殊需求, 或者你本来就是大多数人不一样 Association: 找出订单里一起下单的物品的相关性,一般有Aproiri, FP 等算法 collaborative filtering matrix factorization (and its variant like probablistic matrix fact…
Machine and Deep Learning with Python Education Tutorials and courses Supervised learning superstitions cheat sheet Introduction to Deep Learning with Python How to implement a neural network How to build and run your first deep learning network Neur…