poj 3070 矩阵快速幂模板】的更多相关文章

题意:求fibonacci数列第n项 #include "iostream" #include "vector" #include "cstring" using namespace std; typedef unsigned long int ULL; typedef vector<ULL> vec; typedef vector<vec> mat; ; int n,m; mat mul(mat &A,mat &…
矩阵快速幂:http://www.cnblogs.com/atmacmer/p/5184736.html 题目链接 #include<iostream> #include<cstdio> using namespace std; typedef long long ll; #define MOD 10000 ll a[],b[],a0[],b0[]; void pow_mod(ll n) { a0[]=a0[]=a0[]=,a0[]=; b0[]=b0[]=,b0[]=b0[]=;…
2017-09-13 19:22:01 writer:pprp 题意很简单,就是通过矩阵快速幂进行运算,得到斐波那契数列靠后的位数 . 这是原理,实现部分就是矩阵的快速幂,也就是二分来做 矩阵快速幂可以用来解决线性递推方程,难点在于矩阵的构造 代码如下: /* @theme:用矩阵快速幂解决线性递推公式-斐波那契数列 @writer:pprp @begin:21:17 @end:19:10 @error:注意mod的位置,不能连用,要加括号来用 @date:2017/9/13 */ #inclu…
题意:求菲波那切数列的第n项. 分析:矩阵快速幂. 右边的矩阵为a0 ,a1,,, 然后求乘一次,就进一位,求第n项,就是矩阵的n次方后,再乘以b矩阵后的第一行的第一列. #include <cstdio> #include <cstring> using namespace std; typedef long long ll; ; ; struct Matrix { int n,m; int a[maxn][maxm]; void clear() { n = m = ; mems…
题目:http://poj.org/problem?id=3070 矩阵快速幂模板.mod写到乘法的定义部分就行了. 别忘了 I ( ) 和 i n i t ( ) 要传引用! #include<iostream> #include<cstdio> #include<cstring> using namespace std; ; struct Matrix{ ][]; Matrix operator *(const Matrix &b)const { Matri…
洛谷P3390 题目背景 矩阵快速幂 题目描述 给定n*n的矩阵A,求A^k 输入输出格式 输入格式: 第一行,n,k 第2至n+1行,每行n个数,第i+1行第j个数表示矩阵第i行第j列的元素 输出格式: 输出A^k 共n行,每行n个数,第i行第j个数表示矩阵第i行第j列的元素,每个元素模10^9+7 输入输出样例 输入样例#1: 2 1 1 1 1 1 输出样例#1: 1 1 1 1 说明 n<=100, k<=10^12, |矩阵元素|<=1000 算法:矩阵快速幂 矩阵快速幂模板:…
题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1113 题意:中文题诶- 思路:矩阵快速幂模板 代码: #include <iostream> #define ll long long using namespace std; ; ; int n, m; typedef struct node{ ll x[MAXN][MAXN]; }matrix; matrix matrix_multi(matrix a,…
链接:https://www.luogu.org/problemnew/show/P3390 题意:矩阵快速幂模板题,思路和快速幂一致,只需提供矩阵的乘法即可. AC代码: #include<cstdio> #include<cstring> using namespace std; typedef long long LL; ; int n; LL k; struct Mat{ LL m[][]; }a,e; Mat mul(Mat& x,Mat& y){ Mat…
Fibonacci Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 18607   Accepted: 12920 Description In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequen…
/* 矩阵快速幂: 第n个人如果是m,有f(n-1)种合法结果 第n个人如果是f,对于第n-1和n-2个人有四种ff,fm,mf,mm其中合法的只有fm和mm 对于ffm第n-3个人只能是m那么有f(n-4)种 对于fmm那么对于第n-3个人没有限制有f(n-3)种 顾f(n)=f(n-1)+f(n-3)+f(n-4); 求出前四个结果分别是 a[1]=2;a[2]=4;a[3]=6;a[4]=9; A=|a[4],a[3],a[2],a[1]| 可以构造矩阵 |1 1 0 0 | B= |0…