Deep TEN: Texture Encoding Network】的更多相关文章

纹理特征,材料分类(Material Classification),在MINC-2500.Flickr Material Database.KTH-TIPS-2b.4D-Light-Field-Material.GTOS上state-of-the-art(2017年). 思想主要来源是:传统图片分类方法都是提取人工设计的特征(SIFT等)然后使用BOW进行编码,再用SVM进行分类,后面BOW被VLAD.Fisher Vector编码替换并融合CNN特征可以达到sota的效果.然而这样的方法有缺…
Person Re-identification with Deep Similarity-Guided Graph Neural Network 2018-07-27 17:41:45 Paper: https://128.84.21.199/pdf/1807.09975.pdf 本文将 Graph Neural Network (GNN) 应用到 person re-ID 的任务中,用于 model 不同 prob-gallery 之间的关系,将该信息也用于 feature learning…
3.Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.1 http://blog.csdn.net/sunbow0 Spark MLlib Deep Learning工具箱,是依据现有深度学习教程<UFLDL教程>中的算法.在SparkMLlib中的实现.详细Spark MLlib Deep Learning(深度学习)文件夹结构: 第一章Neural Net(NN) 1.源代码 2.源代码解析 3.实例 第…
3.Spark MLlib Deep Learning Convolution Neural Network(深度学习-卷积神经网络)3.2 http://blog.csdn.net/sunbow0 第三章Convolution Neural Network (卷积神经网络) 2基础及源代码解析 2.1 Convolution Neural Network卷积神经网络基础知识 1)基础知识: 自行google,百度.基础方面的非常多,随便看看就能够,仅仅是非常多没有把细节说得清楚和明确: 能把细…
3.Spark MLlib Deep Learning Convolution Neural Network(深度学习-卷积神经网络)3.3 http://blog.csdn.net/sunbow0 第三章Convolution Neural Network (卷积神经网络) 3实例 3.1 測试数据 依照上例数据,或者新建图片识别数据. 3.2 CNN实例    //2 測试数据    Logger.getRootLogger.setLevel(Level.WARN)    valdata_p…
论文地址:DCCRN:用于相位感知语音增强的深度复杂卷积循环网络 论文代码:https://paperswithcode.com/paper/dccrn-deep-complex-convolution-recurrent-1 引用:Hu Y,Liu Y,Lv S,et al. DCCRN: Deep complex convolution recurrent network for phase-aware speech enhancement[J]. arXiv preprint arXiv:…
catalogue . 引言 . Neural Networks Transform Space - 神经网络内部的空间结构 . Understand the data itself by visualizing high-dimensional input dataset - 输入样本内隐含的空间结构 . Example : Word Embeddings in NLP - text word文本词语串内隐含的空间结构 . Example : Paragraph Vectors in NLP…
深度学习是机器学习研究中的一个新的领域,其动机在于建立.模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本.深度学习是无监督学习的一种. 深度学习的概念源于人工神经网络的研究.含多隐层的多层感知器就是一种深度学习结构.深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示. Deep learning本身算是machine learning的一个分支,简单可以理解为neural network的发展.大约二三十年前,neural n…
文中提出了一种深度网络来解决单通道语音增强问题. 链接:https://arxiv.org/abs/1911.01902 简介 因为背景噪声和混响的存在,录音通常会被扭曲,会对后端的语音识别等技术产生负面影响.单通道的语音增强算法一般有以下几种:Spectral estimation methods(OMLSA,etc),Source separation methods,Mapping methods.DNNs方法属于最后一种.DNN在训练过程中能够处理大量不同种类的噪声信号,这使其可以同时用…
1. 摘要 第一篇用深度学习做Reid的文章,提出的FPNN采用端到端的训练方式,解决行人再识别的不对齐,光照,姿态等问题. 建立了一个新的带benchmark的数据集CUHK03,表现性能良好. 2.介绍 作者在文章中提到,目前做Reid的大致框架如下 目前的工作主要集中在优化上述框架中的一项或者同时优化几项. 作者在本文的贡献总结: (1)解决不对齐.光照变换.几何变换.遮挡等问题 (2)使用一些有用的训练技巧:如dropout.数据增强.数据平衡.自助法等,使用端到端的训练 (3)建立发布…