本文对应脚本已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 我们平时在数据可视化或空间数据分析的过程中经常会需要某个地区的道路网络及节点数据,而OpenStreetMap就是一个很好的数据来源(譬如图1柏林路网): 图1 通常我们可以在 https://www.openstreetmap.org/export 中选择矩形区域内的路网矢量数据进行下载,但这种方式对选择区域的大小有一定限制,想获取较大范围区域…
本文示例代码及数据已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 Kepler.gl作为一款强大的开源地理信息数据可视化工具,可以帮助我们轻松制作针对大规模矢量数据的可视化作品,从而辅助数据分析工作. Kepler.gl制作常规地图非常简单方便,稍微摸索一下仪表盘界面就可以get到用法,但有些特殊的地图则需要额外对数据进行处理或使用Kepler.gl中的一些隐藏功能,譬如之前写过的(数据科学学习手札85)…
一.简介 关于正则表达式,我在前一篇(数据科学学习手札31)中已经做了详细介绍,本篇将对Python中自带模块re的常用功能进行总结: re作为Python中专为正则表达式相关功能做出支持的模块,提供了一系列方法来完成几乎全部类型的文本信息的处理工作,下面一一介绍: 二.re.compile() 在前一篇文章中我们使用过这个方法,它通过编译正则表达式参数,来返回一个目标对象的匹配模式,进而提高了正则表达式的效率,主要参数如下: pattern:输入的欲编译正则表达式,需将正则表达式包裹在''内传…
本文示例代码已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 这是我的系列教程Python+Dash快速web应用开发的第七期,在上一期的文章中,我们对Dash生态里常用的一些简单静态部件进行了介绍和功能展示,并且get到dcc.Markdown()这种非常方便的静态部件. 而在今天的教程内容中,我将带大家学习Dash中渲染网页静态表格的常用方法,并在最后的例子中教大家如何配合Dash,简简单单编写一个数据…
本文示例代码已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 这是我的系列教程Python+Dash快速web应用开发的第九期,在之前三期的教程中,我们针对Dash中经常会用到的一些静态部件进行了较为详细的介绍,从而get到在Dash应用中组织静态内容的常用方法. 而从今天的教程开始,我将带大家来认识和学习Dash生态中非常实用的一些交互式部件,配合回调函数,可以帮助我们构建一个形式丰富的可接受输入,并反馈…
本文示例代码.数据已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 Kepler.gl相信很多人都听说过,作为Uber几年前开源的交互式地理信息可视化工具,kepler.gl依托WebGL强大的图形渲染能力,可以在浏览器端以多种形式轻松展示大规模数据集. 图1 更令人兴奋地是Kepler.gl在去年推出了基于Python的接口库keplergl,结合jupyter notebook/jupyter lab的…
本文示例代码已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 这是我的系列教程Python+Dash快速web应用开发的第五期,在上一期的文章中,我们针对Dash中有关回调的一些技巧性的特性进行了介绍,使得我们可以更愉快地为Dash应用编写回调交互功能. 而今天的文章作为回调交互系统性内容的最后一期,我将带大家get一些Dash中实际应用效果惊人的高级回调特性,系好安全带,我们起飞~ 图1 2 Dash中的…
本文示例代码已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 这是我的系列教程Python+Dash快速web应用开发的第十三期,在上一期中,我们一起认识了Dash自带的交互式表格组件dash_table,并学会了如何自定义表格中不同部分的样式. 而今天的教程,我们将继续深入认识dash_table的更多交互方面的功能,学习如何为渲染出的表格分页,并添加动态内容修改等交互功能. 图1 2 dash_tabl…
本文示例代码及文件已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 在上一期文章中我们一起学习了在Python中如何使用jsonpath库,对JSON格式数据结构进行常规的节点条件查询,可以满足日常许多的数据处理需求. 而在上一期结尾处,我提到了还有其他JSONPath功能相关的进阶Python库,在今天的文章中,我就将带大家学习更加高级的JSON数据处理方式. 2 基于jsonpath-ng的进阶JSON…
数据框(Dataframe)作为一种十分标准的数据结构,是数据分析中最常用的数据结构,在Python和R中各有对数据框的不同定义和操作. Python 本文涉及Python数据框,为了更好的视觉效果,使用jupyter notebook作为演示的编辑器;Python中的数据框相关功能集成在数据分析相关包pandas中,下面对一些常用的关于数据框的知识进行说明: 1.数据框的创建 import pandas as pd from numpy import random a = [i for i i…