首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
BZOJ3782 上学路线 【dp + Lucas + CRT】
】的更多相关文章
bzoj3782上学路线(Lucas+CRT+容斥DP+组合计数)
传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=3782 有部分分的传送门:https://www.luogu.org/problemnew/show/P4478 看到标题开始还以为是AHOI的小雪和小可可…… 题解:乍一看会40pts:测试点1.2:n,m<=1000的直接O(nm)DP:测试点3.4:没有障碍物直接C(n+m,n),然后p=1e6+3是质数可以直接取模. 想了几分钟会60pts:测试点5.6:模数可以拆成几个不超过1e…
【bzoj3782】上学路线 dp+容斥原理+Lucas定理+中国剩余定理
题目描述 小C所在的城市的道路构成了一个方形网格,它的西南角为(0,0),东北角为(N,M).小C家住在西南角,学校在东北角.现在有T个路口进行施工,小C不能通过这些路口.小C喜欢走最短的路径到达目的地,因此他每天上学时都只会向东或北行走:而小C又喜欢走不同的路径,因此他问你按照他走最短路径的规则,他可以选择的不同的上学路线有多少条.由于答案可能很大,所以小C只需要让你求出路径数mod P的值. 输入 第一行,四个整数N.M.T.P. 接下来的T行,每行两个整数,表示施工的路口的坐标. 输出 一…
BZOJ3782 上学路线 【dp + Lucas + CRT】
题目链接 BZOJ3782 题解 我们把终点也加入障碍点中,将点排序,令\(f[i]\)表示从\((0,0)\)出发,不经过其它障碍,直接到达\((x_i,y_i)\)的方案数 首先我们有个大致的方案数\({x_i + y_i \choose x_i}\) 但是中途可能会经过一些其它障碍点,那么就减去 所以 \[f[i] = {x_i + y_i \choose x_i} - \sum\limits_{j = 1}^{i - 1} {x_i - x_j + y_i - y_j \choose x…
bzoj3782上学路线
题意:从n*m网格图的左下角走到右上角(n,m<=10^10),有t个坐标不能经过(t<=200),只能向上向右走,问有多少种不同的走法,对p取模, p只有两种取值,1000003(质数)和1019663265(四个质数的乘积, 3*5*6793*10007) 考试的时候有部分分… 1. n,m<=1000时,O(nm)DP即可 2.t=0的时候求一个组合数就可以了,1000003:预处理阶乘及逆元,l1019663265:lucas定理求组合数之后用CRT合并. 那么考虑t=1的情况,…
BZOJ 3782 上学路线 ——动态规划 Lucas定理 中国剩余定理
我们枚举第一个经过的坏点,然后DP即可. 状态转移方程不是难点,难点在于组合数的处理. 将狼踩尽的博客中有很详细的证明过程,但是我只记住了结论 $n=a_1 * p^k+a_2*p^k-1...$ $m=b_1 * p^k+b_2*p^k-1...$ $C(_{m}^{n})=C(_{b_1}^{a_1})*...$ 大概的意思就是转化成$p$进制下的每一位做组合数,那么我们就可以预处理阶乘以及它的逆元进行计算. 所以说Lucas只能跑过$10^5$当质数很大的时候就放弃. 如果不是质数,那么可…
BZOJ3782 上学路线
设障碍个数为,\(obs\)则一般的容斥复杂度为\(O(2^{obs})\).但因为这个题是网格图,我们可以用DP解.设\(f[i]\)表示不经过任何障碍到达第\(i\)个障碍的方案数,转移时枚举可以到达这个障碍的障碍,\(f[i]=way(O,coor(i))-\sum_j f[j]\cdot way(coor(j),coor(i))\). 同样的题还有两双手.方案数.…
Luogu P4478 [BJWC2018]上学路线 卢卡斯+组合+CRT
首先,从$(0,0)$走到$(n,m)$的方案数是$ C_{n+m}^n$,可以把走的方向看作一种序列,这个序列长$ n+m$ ,你需要从中任取$n$个位置,让他向右走: 然后就是如何处理不能走的点:把点sort一遍,按横纵坐标降序排列,这样前面的点可能会包含后面的点,所以算方案数时时要考虑 算出来从$(0,0)$到$橙色的点(x,y)$的方案数为$C_{x+y}^x$,再减去蓝色点*蓝色点到橙色点方案数,才是到橙色点的方案数: 在最后把每个店的方案数再乘上到终点的代价,就是在模其中一个数意义下…
BZOJ 3782: 上学路线 [Lucas定理 DP]
3782: 上学路线 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 192 Solved: 75[Submit][Status][Discuss] Description 小C所在的城市的道路构成了一个方形网格,它的西南角为(0,0),东北角为(N,M).小C家住在西南角,学校在东北角.现在有T个路口进行施工,小C不能通过这些路口.小C喜欢走最短的路径到达目的地,因此他每天上学时都只会向东或北行走:而小C又喜欢走不同的路径,因此他问你按照他走最…
【BZOJ3782】上学路线 组合数+容斥+CRT
[BZOJ3782]上学路线 Description 小C所在的城市的道路构成了一个方形网格,它的西南角为(0,0),东北角为(N,M).小C家住在西南角,学校在东北角.现在有T个路口进行施工,小C不能通过这些路口.小C喜欢走最短的路径到达目的地,因此他每天上学时都只会向东或北行走:而小C又喜欢走不同的路径,因此他问你按照他走最短路径的规则,他可以选择的不同的上学路线有多少条.由于答案可能很大,所以小C只需要让你求出路径数mod P的值. Input 第一行,四个整数N.M.T.P. 接下来的T…
bzoj 3782 上学路线 卢卡斯定理 容斥 中国剩余定理 dp
LINK:上学路线 从(0,0)走到(n,m)每次只能向上或者向右走 有K个点不能走求方案数,对P取模. \(1\leq N,M\leq 10^10 0\leq T\leq 200\) p=1000003或p=1019663265 考虑dp......(没啥意义. 要求出 从(0,0)到(n,m)不经过一个障碍点的方案数 显然需要容斥. 所有方案C(n+m,n). 还是考虑dp 将T个障碍点排序之后可以发现 后面的点一定不会经过前面的点. 设f[i]表示到达第i个点且不经过前面i-1个点的方案数…