洛谷—— P1450 [HAOI2008]硬币购物】的更多相关文章

P1450 [HAOI2008]硬币购物 硬币购物一共有$4$种硬币.面值分别为$c1,c2,c3,c4$.某人去商店买东西,去了$tot$次.每次带$di$枚$ci$硬币,买$si$的价值的东西.请问每次有多少种付款方法. 直接考虑有多少种方案数可行有点儿难,这时候就应该考虑容斥原理,即有多少人不可行,计算出总的方案数,容斥一下即可. 使用完全背包,计算总的方案数. 然后枚举每一种可能的情况,用总的方案数-第一枚硬币超过的方案数-第二枚...+第一枚和第二枚同时超过的方案数...以此类推 #i…
洛谷题目传送门 我实在是太弱了,第一次正儿八经写背包DP,第一次领会如此巧妙的容斥原理的应用...... 对每次询问都做一遍多重背包,显然T飞,就不考虑了 关键就在于每次询问如何利用重复的信息 我这么弱,当然是想不到容斥原理的啦 暂且先当成完全背包,每种硬币可使用无限次,预处理\(f\)数组,\(f[i]\)等于买价值\(i\)的东西的总方案数 然后就要从中减去不合法的.首先肯定会有一种硬币超额使用,第\(j\)中硬币等于说强制选了\(d_j+1\)个,剩下的依然随便选,那么第 \(j\)种硬币…
题目描述 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值的东西.请问每次有多少种付款方法. 输入输出格式 输入格式: 第一行 c1,c2,c3,c4,tot 下面tot行 d1,d2,d3,d4,s 输出格式: 每次的方法数 输入输出样例 输入样例#1: 1 2 5 10 2 3 2 3 1 10 1000 2 2 2 900 输出样例#1: 4 27 说明 di,s<=100000 tot<=1000 [HAOI2…
无限背包+容斥? 观察数据范围,可重背包无法通过,假设没有数量限制,利用用无限背包 进行预处理,因为实际硬币数有限,考虑减掉多加的部分 如何减?利用容斥原理,减掉不符合第一枚硬币数的,第二枚,依次类推 加上不符第一枚和第二枚的方案,第一枚和第三枚的方案以此类推,不明 白原理可以去看一下容斥原理 较长代码(懒得优化) #include<iostream> #include<cstdio> #include<cstring> #include<string> #…
题目大意:给定 4 种面值的硬币和相应的个数,求购买 S 元商品的方案数是多少. 题解: 考虑没有硬币个数的限制的话,购买 S 元商品的方案数是多少,这个问题可以采用完全背包进行预处理. 再考虑容斥,即:可以采用总方案数 - sum(一种硬币不合法的方案数) + sum(两种) - sum(三种)... 代码如下 #include <bits/stdc++.h> using namespace std; const int maxn=1e5+10; typedef long long LL;…
P1450 [HAOI2008]硬币购物 暴力做法:每次询问跑一遍多重背包. 考虑正解 其实每次跑多重背包都有一部分是被重复算的,浪费了大量时间 考虑先做一遍完全背包 算出$f[i]$表示买价值$i$东西的方案数 蓝后对每次询问价值$t$,减去不合法的方案 $c_1$超额方案$f[t-c_1*(d_1+1)]$,表示取了$d_1+1$个$c_1$,剩下随便取的方案数(这就是差分数组) 如法炮制,减去$c_2,c_3,c_4$的超额方案数 但是我们发现,我们多减了$(c_1,c_2),(c_1,c…
题面 传送门:https://www.luogu.org/problemnew/show/P1450 Solution 这是一道很有意思的在背包里面做容斥的题目. 首先,我们可以很轻松地想到暴力做背包的做法. 就是对于每一次询问,我们都做一次背包. 复杂度O(tot*s*log(di)) (使用二进制背包优化) 显然会T得起飞. 接下来,我们可以换一种角度来思考这个问题. 首先,我们可以假设没有每个物品的数量的限制,那么这样就会变成一个很简单的完全背包问题. 至于完全背包怎么写,我们在这里就不做…
2021.12.06 P1450 [HAOI2008]硬币购物(组合数学+抽屉原理+DP) https://www.luogu.com.cn/problem/P1450 题意: 共有 44 种硬币.面值分别为 \(c_1,c_2,c_3,c_4\). 某人去商店买东西,去了 \(n\) 次,对于每次购买,他带了 \(d_i\) 枚 \(i\) 种硬币,想购买 \(s\) 的价值的东西.请问每次有多少种付款方法. 分析: 设有且仅有一种硬币,价值为 \(c\) ,有 \(d\) 枚.现在想买价值为…
题目描述 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值的东西.请问每次有多少种付款方法. di,s<=100000 tot<=1000 Solution 完全背包数组开不下, 大概要运算一天这样能出答案 假设没有带硬币的限制, 我们可以搞个完全背包算出 \(maxn\) 内每个的方案数, 就可以 \(O(1)\) 回答询问了 问题是如何解决这个限制问题 对于第 \(i\) 个硬币, 我们只能拿 \(d_{i} *…
考虑如果没有个数的限制,那么就是一个完全背包,所以先跑一个完全背包,求出没有个数限制的方案数即可. 因为有个数的限制,所以容斥一下:没有1个超过限制的方案=至少0个超过限制-至少1个超过限制+至少2个超过限制-至少3个超过限制+至少4个超过限制 如何求上面的方案数?有限制时,把$c[i]$这个硬币取了超过$d[i]$次是不应该有贡献的,那么我们先取出$d[i]+1$个价值为$c[i]$的硬币,然后剩下的就是$f[sum-c[i]*(d[i]+1)]$,这就是我们所不需要的答案, 把它按容斥的思路…