背景 [作者:DeepLearningStack,阿里巴巴算法工程师,开源TensorFlow Contributor] 受限于单个Device的计算能力和存储大小,许多深度学习模型都有着使用模型分片或相关策略的需求.模型分片的本质是将模型和相关的计算切分到不同的Device,这样做不但可以解决单个Device放不下大模型的问题,还有可能有计算加速的收益.在深度学习框架方面,显然TensorFlow比Caffe具有更高的灵活性,这主要得益于TensorFlow的Placement机制.Place…
tensorflow中slim模块api介绍 翻译 2017年08月29日 20:13:35   http://blog.csdn.net/guvcolie/article/details/77686555 最近需要使用slim模块,先把slim的github readme放在这里,后续会一点一点翻译 github:https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/slim TensorFlow-Sli…
声明: 1. 我和每一个应该看这篇博文的人一样,都是初学者,都是小菜鸟,我发布博文只是希望加深学习印象并与大家讨论. 2. 我不确定的地方用了"应该"二字 首先,通俗说一下,CNN的存在是为了解决两个主要问题: 1. 权值太多.这个随便一篇博文都能解释 2. 语义理解.全连接网络结构处理每一个像素时,其相邻像素与距离很远的像素无差别对待,并没有考虑图像内容的空间结构.换句话说,打乱图像像素的输入顺序,结果不变. 然后,CNN中的卷积核的一个重要特点是它是需要网络自己来学习的.这一点很简…
背景 [作者:DeepLearningStack,阿里巴巴算法工程师,开源TensorFlow Contributor] 本篇是TensorFlow通信机制系列的第二篇文章,主要梳理使用gRPC网络传输部分模块的结构和源码.如果读者对TensorFlow中Rendezvous部分的基本结构和原理还不是非常了解,那么建议先从这篇文章开始阅读.TensorFlow在最初被开源时还只是个单机的异构训练框架,在迭代到0.8版本开始正式支持多机分布式训练.与其他分布式训练框架不同,Google选用了开源项…
背景 [作者:DeepLearningStack,阿里巴巴算法工程师,开源TensorFlow Contributor] 在TensorFlow源码中我们经常能看到一个奇怪的词——Rendezvous.如果从仔细统计该单词出现的频率和模块,你会发现无论在单机还是分布式,无论在core目录还是contrib目录都存在它的身影,所涉及的模块非常多.Rendezvous是一个法语单词,发音也比较特殊,一般直译为“约会.相会.会和”,而在TensorFlow中,Rendezvous是用来完成消息传输的通…
背景 [作者:DeepLearningStack,阿里巴巴算法工程师,开源TensorFlow Contributor] 在前一篇文章中,我们梳理了TensorFlow中各种异构Device的添加和注册机制,通过使用预先定义好的宏,各种自定义好的Device能够将自己注册到全局表中.TensorFlow期望通过这种模式,能够让Device的添加和注册于系统本身更好的解耦,从而体现了较好的模块化特性.在这篇文章中,我们选择直接去窥探TensorFlow底层架构较为复杂的一个部分——StreamEx…
背景 [作者:DeepLearningStack,阿里巴巴算法工程师,开源TensorFlow Contributor] 作为一款优秀的异构深度学习算法框架,TensorFlow可以在多种设备上运行算法程序,包括CPU,GPU,Google开发的TPU等.因为TensorFlow的架构特性非常好,可扩展性很强,所以也支持用户自定义补充其他计算设备,比如可以接入FPGA甚至是自定义芯片等.虽然在Google发布的TensorFlow white paper中并没有过多的描述设备管理相关的内容,只是…
Google在TensorFlow1.0,之后推出了一个叫slim的库,TF-slim是TensorFlow的一个新的轻量级的高级API接口.这个模块是在16年新推出的,其主要目的是来做所谓的“代码瘦身”.它类似我们在TensorFlow模块中所介绍的tf.contrib.lyers模块,将很多常见的TensorFlow函数进行了二次封装,使得代码变得更加简洁,特别适用于构建复杂结构的深度神经网络,它可以用了定义.训练.和评估复杂的模型. 这里我们为什么要过来介绍这一节的内容呢?主要是因为Ten…
在深度学习章节里,已经介绍了批量归一化的概念,详情请点击这里:第九节,改善深层神经网络:超参数调试.正则化以优化(下) 神经网络在进行训练时,主要是用来学习数据的分布规律,如果数据的训练部分和测试部分分布不一样,那么网络的泛化能力会变得非常差.而且对于训练的数据,每批分布也是不一样的,那么网络在迭代的过程中也要学习和适应不同的分布.这会大大降低网络的训练速度.此外,数据的分布对于激活函数来说也非常重要,有时数据分布范围太大不利于利用激活函数的非线性特性,比如激活函使用Sigmoid函数时,会导致…
前言 最近尝试看TensorFlow中Slim模块的代码,看的比较郁闷,所以试着写点小的代码,动手验证相关的操作,以增加直观性. 卷积函数 slim模块的conv2d函数,是二维卷积接口,顺着源代码可以看到最终调的TensorFlow接口是convolution,这个地方就进入C++层面了,暂时不涉及.先来看看这个convolution函数,官方定义是这样的: tf.nn.convolution( input, filter, padding, strides=None, dilation_ra…