adaboost-笔记(1)】的更多相关文章

转自:https://blog.csdn.net/px_528/article/details/72963977 写在前面 说到Adaboost,公式与代码网上到处都有,<统计学习方法>里面有详细的公式原理,Github上面有很多实例,那么为什么还要写这篇文章呢?希望从一种更容易理解的角度,来为大家呈现Adaboost算法的很多关键的细节. 本文中暂时没有讨论其数学公式,一些基本公式可以参考<统计学习方法>. 基本原理 Adaboost算法基本原理就是将多个弱分类器(弱分类器一般选…
转自:https://www.cnblogs.com/ScorpioLu/p/8295990.html 一.Boosting提升算法 AdaBoost是典型的Boosting算法,属于Boosting家族的一员.在说AdaBoost之前,先说说Boosting提升算法.Boosting算法是将“弱学习算法“提升为“强学习算法”的过程,主要思想是“三个臭皮匠顶个诸葛亮”.一般来说,找到弱学习算法要相对容易一些,然后通过反复学习得到一系列弱分类器,组合这些弱分类器得到一个强分类器. Boosting…
最近要做二分类问题,先Mark一下知识点和代码,参考:Opencv2.4.9源码分析——Boosting   以下内容全部转自此文 一 原理 二 opencv源码 1.先看构建Boosting的参数: CvBoostParams::CvBoostParams() { boost_type = CvBoost::REAL; weak_count = ; weight_trim_rate = 0.95; cv_folds = ; max_depth = ; } CvBoostParams::CvBo…
前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习笔记,这次是第7章 - 利用AdaBoost元算法提高分类性能. 核心思想 在使用某个特定的算法是,有时会发现生成的算法\(f(x)\)的错误率比较高,只使用这个算法达不到要求. 这时\(f(x)\)就是一个弱算法. 在以前学习算法的过程中,我们认识到算法的参数很重要,所以把公式改写成这样: \[ f(x,arguments) \\ where \\ \qquad x \text{ : calculated…
声明: 这篇笔记是自己对AdaBoost原理的一些理解,如果有错,还望指正,俯谢- 背景: AdaBoost算法,这个算法思路简单,但是论文真是各种晦涩啊-,以下是自己看了A Short Introduction to Boosting和PRML的一些笔记. 摔- 正文: AdaBoost算法,是一种组合算法(通过多个弱分类器,组合成一个强分类器): 关于AdaBoost算法的流程,简单的描述,我们以A Short Introduction to Boosting中提到的用AdaBoosting…
学习了李航<统计学习方法>第八章的提升方法,现在对常用的一种提升方法AdaBoost作一个小小的笔记,并用python实现书本上的例子,加深印象.提升方法(boosting)是一种常用的统计学习方法,在分类中通过改变样本的权值分布,学习多个分类器,然后组合这些分类器,提高分类性能. 一. 提升方法的问题 1.训练弱分类器时如何更改样本权重或概率分布 2.如何组合弱分类器 AdaBoost的解决方案 1.在训练过程中,提高前一轮被分类器错误分类的样本权值,降低被正确分类的样本权值 2.采用加权多…
1:简单概念描写叙述 Adaboost是一种弱学习算法到强学习算法,这里的弱和强学习算法,指的当然都是分类器,首先我们须要简介几个概念. 1:弱学习器:在二分情况下弱分类器的错误率会低于50%. 事实上随意的分类器都能够做为弱分类器,比方之前介绍的KNN.决策树.Naïve Bayes.logiostic回归和SVM都能够.这里我们採用的弱分类器是单层决策树,它是一个单节点的决策树. 它是adaboost中最流行的弱分类器,当然并不是唯一可用的弱分类器.即从特征中选择一个特征来进行分类.该特征能…
笔记见备注 # _*_ coding:utf-8 _*_ from numpy import * # 简单数据集 def loadSimpData(): datMat = matrix([[1., 2.1], [2., 1.1], [1.3, 1.], [1., 1.], [2., 1.]]) classLabels = [1.0, 1.0, -1.0, -1.0, 1.0] return datMat, classLabels # 7-1 单层决策树生成函数 # lt=less than #…
原文地址: https://www.cnblogs.com/steven-yang/p/5686473.html ----------------------------------------------------------------------------------------------------------------- 前言 最近在看Peter Harrington写的“机器学习实战”,这是我的学习笔记,这次是第7章 - 利用AdaBoost元算法提高分类性能. 这个思路称之…
本文结构: 什么是集成学习? 为什么集成的效果就会好于单个学习器? 如何生成个体学习器? 什么是 Boosting? Adaboost 算法? 什么是集成学习 集成学习就是将多个弱的学习器结合起来组成一个强的学习器. 这就涉及到,先产生一组‘个体学习器’,再用一个策略将它们结合起来. 个体学习器可以选择:决策树,神经网络.集成时可以所有个体学习器属于同一类算法:全是决策树,或全是神经网络:也可以来自不同的算法.结合策略:例如分类问题,可以用投票法,少数服从多数. 之所以用这种集成的思想,是因为单…