基因组表达分析:如何选择RNA-seq vs. 芯片 发布日期:2017-03-29 10:00 DNA 芯片(上图左侧)由附着在表面的核酸探针组成.首先,从样品中提取 RNA 并转化为互补 DNA(cDNA),用荧光标签(1)进行标记. 接下来标记的 cDNA 片段与芯片(2)上的核酸杂交. 扫描芯片检测每个斑点的荧光水平,从而得到基因表达水平(3). 在 RNA-seq 中,RNA 也从样品中提取并转化为 cDNA,以备用于测序(A). 接下来对 cDNA 文库进行测序(B),将所得读数与基…
RNA -seq RNA-seq目的.用处::可以帮助我们了解,各种比较条件下,所有基因的表达情况的差异. 比如:正常组织和肿瘤组织的之间的差异:检测药物治疗前后,基因表达的差异:检测发育过程中,不同的发育阶段,不同的组织之间的基因表达差异 等 在所有检测的差异类型中,最常用的一种检测就是:检测所有mRNA的表达量的差异. 还可以检测 RNA 的结构上的差异.例如:mRNA的剪接方式的差异,即“可变剪接”:还可以检测“融合基因”,同时还可以检测基因单点突变导致的SNP. 测序方法.步骤:人的细胞…
英文名:Genetic architecture of artemisinin-resistant Plasmodium falciparum 中文名:疟原虫青蒿素抗药性的全基因组关联分析 期刊:Nature Genetics影响因子:29.352一.研究背景以青蒿素为主的联合疗法一直以来都是治疗疟疾的有效方法,值得关注的是横跨亚洲到非洲都出现了对一线药物的抗药性.阻止出现更高水平的抗药性以及阻止抗药性扩散到非洲刻不容缓.为了更好同抗药性进行斗争,了解遗传因素在抗药性的混合和传播中的作用非常重要…
全基因组关联分析流程: 一.准备plink文件 1.准备PED文件 PED文件有六列,六列内容如下: Family ID Individual ID Paternal ID Maternal ID Sex (1=male; 2=female; other=unknown) Phenotype PED文件是空格(空格或制表符)分隔的文件. PED文件长这个样: 2.准备MAP文件 MAP文件有四列,四列内容如下: chromosome (1-22, X, Y or 0 if unplaced) r…
两种RNA seq的基因表达量计算方法: 1. RPKM:http://www.plob.org/2011/10/24/294.html 2. RSEM:这个是TCGAdata中使用的.RSEM据说比RPKM更有优势.anyway,原来还以为TCGA 的data需要重新换算成RPKM,现在不需要了~:)…
4.2.2  表达并列条件选择的switch语句:如果……如果……如果…… 在现实世界中,还有这样一类特殊的条件选择: 如果明天是晴天,我就穿T恤: 如果明天是阴天,我就穿衬衣: 如果明天是雨天,我就穿外套. 之所以说这是条件选择,是因为它根据不同的情况执行了不同的动作:而之所以说它特殊,是因为这些不同情况(晴天.阴天.雨天)属于同一条件(天气情况).只要是条件判断,我们就可以用if语句将其表达出来,利用前面介绍过的if…else if…并列条件选择语句,我们可以将这个看天穿衣的场景表达如下:…
前言 关于全基因组关联分析(GWAS)原理的资料,网上有很多. 这也是我写了这么多GWAS的软件教程,却从来没有写过GWAS计算原理的原因. 恰巧之前微博上某位小可爱提问能否写一下GWAS的计算原理.我一顺口就答应了. 后面一直很懒,不愿意动笔,但想着既然答应了,不写说不过去. 我写这段话的意思是,如果你有任何关于GWAS分析问题或者疑问,希望我能写一下的,可以跟我说. 如果我认为有价值,写出来对大家有帮助的话,会写的. GWAS所涉及的公式:最小二乘法 首先,我们来一个知识点的回顾:最小二乘法…
有很多概念需要明确区分: 人有23对染色体,其中22对常染色体autosome,另外一对为性染色体sex chromosome,XX为女,XY为男. 染色体区带命名:在标示一特定的带时需要包括4项:①染色体号:②臂的符号:③区号:④在该区内的带号. 1p22表示为1号染色体短臂2区2带. 等位基因其实是一个集合,在同一个locus出现得基因型互为等位基因.Aa不能叫等位基因,正确的逻辑是:A和a是一组等位基因.由等位基因可以定义纯合和杂合. 二倍体与多倍体细胞的某些染色体上,在同一基因座上有相同…
Touch panel DTS 分析(MSM8994平台,Atmel 芯片) 在MSM8994平台,Touch panel的DTS写节点/kernel/arch/arm/boot/dts/qcom/msm8994-mtp.dtsi文件里.详细代码例如以下: &soc {           i2c@f9924000 {                                    atmel_mxt_ts@4a {                                    …
现在GWAS已经属于比较古老的技术了,主要是碰到严重的瓶颈了,单纯的snp与表现的关联已经不够,需要具体的生物学解释,这些snp是如何具体导致疾病的发生的. 而且,大多数病找到的都不是个别显著的snp,大多数都找到了很多的snp,而且snp都落在非编码区了,这就导致对这些snp的解读非常的困难. 目前,已经有非常傻瓜式的GWAS pipeline了,比如:A tutorial on conducting genome‐wide association studies: Quality contr…