论文提出了新的少样本目标检测算法,创新点包括Attention-RPN.多关系检测器以及对比训练策略,另外还构建了包含1000类的少样本检测数据集FSOD,在FSOD上训练得到的论文模型能够直接迁移到新类别的检测中,不需要fine-tune   来源:晓飞的算法工程笔记 公众号 论文: Few-Shot Object Detection with Attention-RPN and Multi-Relation Detector 论文地址:https://arxiv.org/abs/1908.0…
Rich feature hierarchies for accurate object detection and semantic segmentation 作者: Ross Girshick Jeff Donahue Trevor Darrell Jitendra Malik 引用: Girshick, Ross, et al. "Rich feature hierarchies for accurate object detection and semantic segmentation…
近日,知名开源社区Github上有个名为DSFD(Dual Shot Face Detector)的算法引起了业内关注,它正是来自于腾讯优图.目前,该算法已经被计算机视觉顶级会议CVPR 2019接收,并且在2018年10月刷新了两个权威的人脸检测数据集WIDER FACE和FDDB上的新纪录. Github开源地址: https://github.com/TencentYoutuResearch/FaceDetection-DSFD 论文公开地址:https://arxiv.org/abs/1…
一直想基于传统图像匹配方式做一个融合Demo,也算是对上个阶段学习的一个总结. 由此,便采购了一个摄像头,在此基础上做了实时检测平面目标的特征匹配算法. 代码如下: # coding: utf-8 ''' @author: linxu @contact: 17746071609@163.com @time: 2021-07-26 上午11:54 @desc: 基于特征匹配的实时平面目标检测算法 @Ref: https://docs.opencv.org/3.0-beta/doc/py_tutor…
Isolation,意为孤立/隔离,是名词,其动词为isolate,forest是森林,合起来就是“孤立森林”了,也有叫“独异森林”,好像并没有统一的中文叫法.可能大家都习惯用其英文的名字isolation forest,简称iForest . iForest适用于连续数据(Continuous numerical data)的异常检测,将异常定义为“容易被孤立的离群点(more  likely to be separated)”——可以理解为分布稀疏且离密度高的群体较远的点.用统计学来解释,在…
Isolation,意为孤立/隔离,是名词,其动词为isolate,forest是森林,合起来就是“孤立森林”了,也有叫“独异森林”,好像并没有统一的中文叫法.可能大家都习惯用其英文的名字isolation forest,简称iForest . iForest适用于连续数据(Continuous numerical data)的异常检测,将异常定义为“容易被孤立的离群点(more  likely to be separated)”——可以理解为分布稀疏且离密度高的群体较远的点.用统计学来解释,在…
引言 射线Ray,在3D图形学中有很多重要的应用.比如,pick操作就是使用射线Ray来实现的,还有诸如子弹射线的碰撞检测等等都可以使用射线Ray来完成.所以,在本次博客中,将会简单的像大家介绍下,如何进行Ray-Triangle的交叉检测. Ray-Triangle交叉检测算法 在Tomas Moller的MT97论文中,提出了一种新的算法.这种算法能够减少以前进行Ray-Triangle交叉检测所需要的内存消耗.在以前,进行Ray-Triangle交叉检测,主要是计算射线与三角形所构成的平面…
在计算机视觉领域中,人脸检测或者物体检测一直是一个非常受关注的领域,而在人脸检测中,Viola-Jones人脸检测算法可以说是非常经典的一个算法,所有从事人脸检测研究的人,都会熟悉了解这个算法,Viola-Jones算法在2001年的CVPR上提出,因为其高效而快速的检测即使到现在也依然被广泛使用,OpenCV 和 Matlab中都将这个算法写进了函数库可以很方便的直接调用.虽然VJ人脸检测算法最初都是用来检测正面的人脸图像,对于侧脸图像的检测不是很稳健,不过这个算法依然有值得研究的价值. 这个…
论文提出CoAE少样本目标检测算法,该算法使用non-local block来提取目标图片与查询图片间的对应特征,使得RPN网络能够准确的获取对应类别对象的位置,另外使用类似SE block的squeeze and co-excitation模块来根据查询图片加强对应的特征纬度,最后结合margin based ranking loss达到了state-of-the-art,论文创新点满满,值得一读 论文:One-Shot Object Detection with Co-Attention a…
论文提出增量式少样本目标检测算法ONCE,与主流的少样本目标检测算法不太一样,目前很多性能高的方法大都基于比对的方式进行有目标的检测,并且需要大量的数据进行模型训练再应用到新类中,要检测所有的类别则需要全部进行比对,十分耗时.而论文是增量式添加类别到模型,以常规的推理形式直接检测,十分高效且数据需求十分低,虽然最终的性能有点难看,但是这个思路还是可以有很多工作可以补的   来源:晓飞的算法工程笔记 公众号 论文: Incremental Few-Shot Object Detection 论文地…