一.按时间抽选的基-2 FFT实现原理 观察DIT(基2)FFT的流图(N点,N为2的幂次),可以总结出如下规律: (1)共有\(L=\log_2⁡N\)级蝶形运算: (2)输入倒位序,输出自然顺序: (3)第\(m\)级(\(m\)从1开始,下同)蝶形结对偶结点距离为\(2^{m-1}\): (4)第\(m\)级蝶形结计算公式: \(X_m (k)=X_{m-1} (k)+X_{m-1 } (k+2^{m-1} ) W_N^r\) \(X_m (k+2^{m-1} )=X_{m-1} (k)-…
一.FIR数字滤波器设计原理  本实验采用窗函数法设计FIR数字低通滤波器.我们希望设计的滤波器系统函数如下: \(H_{d}\left( e^{jw} \right) = \left\{ \begin{array}{l} {e^{- jw\alpha},~~~\left| w \right| \leq w_{c}} \\ {0,~~~{\rm otherwise}} \\ \end{array} \right.\)  它对应的单位冲激响应是: \(h_{d}\left( n \right) =…
在数字信号处理中常常需要用到离散傅立叶变换(DFT),以获取信号的频域特征.尽管传统的DFT算法能够获取信号频域特征,但是算法计算量大,耗时长,不利于计算机实时对信号进行处理.因此至DFT被发现以来,在很长的一段时间内都不能被应用到实际的工程项目中,直到一种快速的离散傅立叶计算方法--FFT,被发现,离散傅立叶变换才在实际的工程中得到广泛应用.需要强调的是,FFT并不是一种新的频域特征获取方式,而是DFT的一种快速实现算法.本文就FFT的原理以及具体实现过程进行详尽讲解. DFT计算公式 本文不…
一.前言 FFT运算是目前最常用的信号频谱分析算法.在本科学习数字信号处理这门课时一直在想:学这些东西有啥用?公式推来推去的,有实用价值么?到了研究生后期才知道,广义上的数字信号处理无处不在:手机等各种通信设备和WIFI的物理层信号处理.摄像头内的ISP.音频信号的去噪等.各种算法中,FFT是查看信号本质,也就是频谱的重要手段.之前仅直接调用FFT/IFFT IP核,今天深入探讨下算法本身和实现方案. 二.FFT运算原理及结构 本文仅对FFT的核心思想.作用和算法结构进行介绍,FFT具体原理和公…
DCT变换的原理及算法 文库介绍 对于初学数字信号处理(DSP)的人来说,这几种变换是最为头疼的,它们是数字信号处理的理论基础,贯穿整个信号的处理. 学习过<高等数学>和<信号与系统>这两门课的朋友,都知道时域上任意连续的周期信号可以分解为无限多个正弦信号之和,在频域上就表示为离散非周期的信号,即时域连续周期对应频域离散非周期的特点,这就是傅里叶级数展开(FS),它用于分析连续周期信号. FT是傅里叶变换,它主要用于分析连续非周期信号,由于信号是非周期的,它必包含了各种频率的信号,…
翻译自Python For Engineers. 1. 创建一个正弦波 在这个项目中,我们将创建一个正弦波,并将其保存为wav文件. 但在此之前,你应该知道一些理论. 频率:频率是正弦波重复一秒的次数.我将使用1KHz的频率. 采样率:大多数现实世界的信号是模拟的,而计算机是数字的.因此,我们需要一个模数转换器将模拟信号转换为数字信号.有关转换器如何工作的详细信息超出了本书的范围.关键是采样率,即转换器每秒采样模拟信号的次数. 现在,采样率对我们来说并不重要,因为我们正在以数字方式完成所有工作,…
原址:http://www.cnblogs.com/BitArt/archive/2012/11/24/2786390.html 很多同学学习了数字信号处理之后,被里面的几个名词搞的晕头转向,比如DFT,DTFT,DFS,FFT,FT,FS等, FT和FS属于信号与系统课程的内容,是对连续时间信号的处理,这里就不过多讨论,只解释一下前四者的关系. 首先说明一下,我不是数字信号处理专家,因此这里只站在学生的角度以最浅显易懂的性质来解释问题,而不涉及到任何公式运算. 学过卷积,我们都知道有时域卷积定…
前一阵子由于考博学习须要,看了<数字信号处理>,之前一直不清除这门课的理论在哪里应用比較广泛. 这次正巧用Audition处理了一段音频,猛然发现<数字信号处理>这门课还是很实用的,在音频处理领域至少是这样.在此记录一下几步简单操作. 一.频谱 打开Audition.拖入一段音频.默认打开的是音频时域的波形图.波形图的横坐标是时间,纵坐标是採样值的大小. 上面那个图事实上就是音频文件里全部採样点连起来的一条线,只是因为採样点太密集了,所以根本看不出来採样点了.把波形图不停地放大,放…
过去十几年,通信与多媒体技术的快速发展极大地扩展了数字信号处理(DSP)的应用范围.眼下正在发生的是,以更高的速度和更低的成本实现越来越复杂的算法,这是针对高级信息服更高带宽以及增强的多媒体处理能力等需求的日益增加的结果.一些高性能应用正在不断发展,其中包括高级有线和无线音频.数据和视频处理. 通信和多媒体应用的发展,如互联网通信.安全无线通信以及消费娱乐设备,都在驱动着对能够有效实现复数运算和信号处理算法的高性能设备的需求. 这些应用中需要一些典型的DSP算法包括快速傅里叶变换(FFT).离散…
1. AR模型概念观       AR模型是一种线性预测,即已知N个数据,可由模型推出第N点前面或后面的数据(设推出P点),所以其本质类似于插值,其目的都是为了增加有效数据,只是AR模型是由N点递推,而插值是由两点(或少数几点)去推导多点,所以AR模型要比插值方法效果更好. 数字信号处理功率谱估计方法分经典功率谱估计和现代功率谱估计,现代功率谱估计以参数模型功率谱估计为代表,参数功率谱模型如下: u(n) ——>  H(z)   ——> x(n) 参数模型的基本思路是: —— 参数模型假设研究…