FLink16--计数窗口--CountWindiwApp】的更多相关文章

先上代码: public class WordCountKeyedState { public static void main(String[] args) throws Exception { StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); // 初始化测试单词数据流 DataStreamSource<String> lineDS = env.addSource(n…
戳更多文章: 1-Flink入门 2-本地环境搭建&构建第一个Flink应用 3-DataSet API 4-DataSteam API 5-集群部署 6-分布式缓存 7-重启策略 8-Flink中的窗口 9-Flink中的Time Flink时间戳和水印 Broadcast广播变量 FlinkTable&SQL Flink实战项目实时热销排行 Flink写入RedisSink 17-Flink消费Kafka写入Mysql 戳原文: 1-Flink入门 2-本地环境搭建&构建第一个…
一.为什么需要 window ? 在流处理应用中,数据是连续不断的,即数据是没有边界的,因此我们不可能等到所有数据都到了才开始处理.当然我们可以每来一个消息就处理一次,但是有时我们需要做一些聚合类的处理,例如:在过去的1分钟内有多少用户点击了我们的网页.在这种情况下,我们必须定义一个窗口,用来收集最近一分钟内的数据,并对这个窗口内的数据进行计算. 流上的聚合需要由 window 来划定范围,比如 "计算过去的5分钟" ,或者 "最后100个元素的和" . windo…
窗口分类 按照驱动类型分类 窗口本身是截取有界数据的一种方式,所以窗口一个非常重要的信息就是"怎样截取数据".换句话说,就是以什么标准来开发和结束数据的截取. 按照驱动类型分类主要分为两类:时间窗口与计数窗口 1.时间窗口 时间窗口以时间点来定义窗口的开始与结束,所以截取出的就是某一段时间的数据,窗口的时间范围都是左闭右开的原则[start,end): 2.计数窗口 计数窗口基于元素的个数来截取数据,到达固定的个数时就触发计算并关闭窗口. 计数窗口相比时间窗口更加简单,我们只需要指定窗…
Working with State 本文翻译自Streaming Guide/ Fault Tolerance / Working with State ---------------------------------------------------------------------------------------- Flink中所有transformation可能都看上去像是方法(在functional processing术语中),但事实上它们都是有状态的Operator.你可…
数据架构设计领域发生了重大的变化,基于流的处理是变化的核心. 分布式文件系统用来存储不经常更新的数据,他们也是大规模批量计算所以来的数据存储方式. 批处理架构(lambda架构)实现计数的方式:持续摄取数据的管道(flume)每小时创建一个文件,由调度程序安排批处理作业分析最近生成的文件,然后输出计数结果. 该架构缺点:1.组件多,设计管道.调度.作业程序,学习成本.管理成本大 2.修改分析时间周期不方便,涉及工作流调度逻辑 3.实现计数预警功能需要引入流处理系统,流处理做近似计算,批处理做准确…
前言 目前有许多数据分析的场景从批处理到流处理的演变, 虽然可以将批处理作为流处理的特殊情况来处理,但是分析无穷集的流数据通常需要思维方式的转变并且具有其自己的术语(例如,"windowing(窗口化)"."at-least-once(至少一次)"."exactly-once(只有一次)" ). 对于刚刚接触流处理的人来说,这种转变和新术语可能会非常混乱. Apache Flink 是一个为生产环境而生的流处理器,具有易于使用的 API,可以用于…
Flink对于流处理架构的意义十分重要,Kafka让消息具有了持久化的能力,而处理数据,甚至穿越时间的能力都要靠Flink来完成. 在Streaming-大数据的未来一文中我们知道,对于流式处理最重要的两件事,正确性,时间推理工具.而Flink对两者都有非常好的支持. Flink对于正确性的保证 对于连续的事件流数据,由于我们处理时可能有事件暂未到达,可能导致数据的正确性受到影响,现在采取的普遍做法的通过高延迟的离线计算保证正确性,但是也牺牲了低延迟. Flink的正确性体现在计算窗口的定义符合…
1.背景 Apache Flink 和 Apache Storm 是当前业界广泛使用的两个分布式实时计算框架.其中 Apache Storm(以下简称"Storm")在美团点评实时计算业务中已有较为成熟的运用(可参考 Storm 的 可靠性保证测试),有管理平台.常用 API 和相应的文档,大量实时作业基于 Storm 构建.而 Apache Flink(以下简称"Flink")在近期倍受关注,具有高吞吐.低延迟.高可靠和精确计算等 特性,对事件窗口有很好的支持,目…
Flink Window机制范例实录: 什么是Window?有哪些用途? 1.window又可以分为基于时间(Time-based)的window 2.基于数量(Count-based)的window. Flink DataStream API提供了Time和Count的window,同时增加了基于Session的window. 同时,由于某些特殊的需要,DataStream API也提供了定制化的window操作,供用户自定义window. 下面,主要介绍Time-Based window以及…