NYOJ 298 点的变换】的更多相关文章

题目链接:298 点的变换 这题放在矩阵快速幂里,我一开始想不透它是怎么和矩阵搭上边的,然后写了个暴力的果然超时,上网看了题解后,发现竟然能够构造一些精巧的矩阵来处理,不得不说实在太强大了! http://blog.csdn.net/lyhvoyage/article/details/39755595 然后我的代码是: #include<cstdio> #include<cstring> #include<cmath> #include<cstdlib> #…
http://acm.nyist.net/JudgeOnline/problem.php?pid=298 最好还是自己手推一下矩阵式子..不算太难..但是有一些小知识.... 首先当然是矩阵的细节..矩阵是不支持交换率的..所以如图的式子乘进去时要放在左边... 还有的比如说: cmath里的sin函数用的是弧度制..需要把度数/180*M_PI ( M_PI是cmath里定义的常数π ); double在取固定小数位的时候小负数四舍五入会出现-0.0之类的情况,可以自己const一个小数eps…
利用矩阵来做变换,参考Max大神的思想的,虽然不是同一道题. ----------- 给定n个点,m个操作,构造O(m+n)的算法输出m个操作后各点的位置.操作有平移.缩放.翻转和旋转    这里的操作是对所有点同时进行的.其中翻转是以坐标轴为对称轴进行翻转(两种情况),旋转则以原点为中心.如果对每个点分别进行模拟,那么m个操作总共耗时O(mn).利用矩阵乘法可以在O(m)的时间里把所有操作合并为一个矩阵,然后每个点与该矩阵相乘即可直接得出最终该点的位置,总共耗时O(m+n).假设初始时某个点的…
点的变换 时间限制:2000 ms  |  内存限制:65535 KB 难度:5 描写叙述 平面上有不超过10000个点.坐标都是已知的.如今可能对全部的点做下面几种操作: 平移一定距离(M),相对X轴上下翻转(X),相对Y轴左右翻转(Y),坐标缩小或放大一定的倍数(S),全部点对坐标原点逆时针旋转一定角度(R). 操作的次数不超过1000000次,求终于全部点的坐标. 提示:假设程序中用到PI的值,能够用acos(-1.0)获得. 输入 仅仅有一组測试数据 測试数据的第一行是两个整数N,M,分…
题目地址:NYOJ 298 思路:该题假设用对每一个点模拟的操作.时间复杂度为O(n+m),结果肯定超时.然而利用矩阵乘法能够在O(m)的时间内把全部的操作合并为一个矩阵,然后每一个点与该矩阵相乘能够得出终于的位置. PS:十个利用矩阵乘法解决的经典题目 超级具体. #include <stdio.h> #include <math.h> #include <string.h> #include <stdlib.h> #include <iostrea…
任意门:http://acm.nyist.edu.cn/JudgeOnline/problem.php?pid=298 点的变换 时间限制:2000 ms  |  内存限制:65535 KB 难度:5   描述 平面上有不超过10000个点,坐标都是已知的,现在可能对所有的点做以下几种操作: 平移一定距离(M),相对X轴上下翻转(X),相对Y轴左右翻转(Y),坐标缩小或放大一定的倍数(S),所有点对坐标原点逆时针旋转一定角度(R). 操作的次数不超过1000000次,求最终所有点的坐标. 提示:…
在博客NYOJ 998 中已经写过计算欧拉函数的三种方法,这里不再赘述. 本题也是对欧拉函数的应用的考查,不过考查了另外一个数论基本定理:如何用欧拉函数求小于n且与n互质所有的正整数的和. 记euler(x)公式能计算小于等于x的并且和x互质的数的个数:我们再看一下如何求小于等于n的和n互质的数的和, 我们用sum(n)表示: 定理:若gcd(x, a)=1,则有gcd(x, x-a)=1: 证明:假设gcd(x, x-a)=k (k>1),那么有(x-a)%k=0---1式,x%k=0---2…
1692: [Usaco2007 Dec]队列变换 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1383  Solved: 582[Submit][Status][Discuss] Description FJ打算带他的N(1 <= N <= 30,000)头奶牛去参加一年一度的“全美农场主大奖赛”.在这场比赛中,每个参赛者都必须让他的奶牛排成一列,然后领她们从裁判席前依次走过. 今年,竞赛委员会在接受队伍报名时,采用了一种新的登记规则:他们把所…
这道题是欧拉函数的使用,这里简要介绍下欧拉函数. 欧拉函数定义为:对于正整数n,欧拉函数是指不超过n且与n互质的正整数的个数. 欧拉函数的性质:1.设n = p1a1p2a2p3a3p4a4...pkak为正整数n的素数幂分解,那么φ(n) = n·(1-1/p1)·(1-1/p2)·(1-1/p3)···(1-1/pk) 2.如果n是质数,则φ(n) = n-1;  反之,如果p是一个正整数且满足φ(p)=p-1,那么p是素数. 3.设n是一个大于2 的正整数,则φ(n)是偶数 4.当n为奇数…
在我们正式开始讲解Hilbert-Huang Transform之前,不妨先来了解一下这一伟大算法的两位发明人和这一算法的应用领域 Section I 人物简介 希尔伯特:公认的数学界“无冕之王”,1943年去世于瑞士苏黎世.除此之外,自不必过多介绍. 黄锷:1937年出生于湖北省:1975年进入NASA(美国国家宇航局):美国国家工程院院士. Section II Hilbert-Huang的应用领域 医学领域:探测心率不齐.登革热的扩散.血压的变化 交通领域:探测公路桥梁安全 安全领域:辨识…