协方差Covariance的表述推导】的更多相关文章

今天想了一下关于概率论的一维数据期望.方差以及高维数据的矩阵表示,突然想到为什么在一维中 方差的表示为:V(x) = E((x-E(x))2) 而到了高维,这样的表述就成了协方差呢?V(X) = E((X-µ)(X-µ)T), 它为什么可以表示协方差呢?于是拿出笔自己推到了一下,果然! 详细推导过程见下图: 所以,我们可以得出 V(X) = E((X-µ)(X-µ)T) 其实就是描述了变量之间的协方差,就是协方差矩阵.…
https://www.jianshu.com/p/e1c8270477bc?utm_campaign=maleskine&utm_content=note&utm_medium=seo_notes&utm_source=recommendation 三个式子分别表示了样本的平均值.样本方差无偏估计值.样本协方差的无偏估计值,如果把S.C中的N-1换做N就成了表示方差与协方差了. 函数名称:cov函数功能: 求协方差矩阵函数用法: cov(X)  % cov(X,0) = cov(…
covariance, co本能的想到双变量,用于描述两个变量之间的关系. correlation,相关性,covariance标准化后就是correlation. covariance的定义: 期望,实例减去均值,积 covariance matrix也就是相关性矩阵的原始形式,描述了一群变量之间的相互关系 一下是一个例子: For eg here’s an example : Covariance matrix is of dimension #cols * #cols, diagonal…
title: [概率论]4-6:协方差和相关性(Covariance and Correlation) categories: - Mathematic - Probability keywords: - Covariance - Correlation - Properties of Covariance and Correlation toc: true date: 2018-03-26 10:44:07 Abstract: 本文介绍协方差和相关性的基础知识,以及部分性质 Keywords:…
概率和信息论. 概率论,表示不确定性声明数学框架.提供量化不确定性方法,提供导出新不确定性声明(statement)公理.人工智能领域,概率法则,AI系统推理,设计算法计算概率论导出表达式.概率和统计理论分析AI系统行为.概率论提出不确定声明,在不确定性存在情况下推理.信息论量化概率分布不确定性总量.Jaynes(2003).机器学习经常处理不确定量,有时处理随机(非确定性)量.20世纪80年代,研究人员对概率论量化不确定性提出信服论据.Pearl(1998). 不确定性来源.被建模系统内存的随…
基本理论 Correlation Are there correlations between variables? Correlation measures the strength of the linear association between two numerical variables. For example, you could imagine that for children, age correlates with height: the older the child,…
目录 一.引言 1.什么是.为什么需要深度学习 2.简单的机器学习算法对数据表示的依赖 3.深度学习的历史趋势 最早的人工神经网络:旨在模拟生物学习的计算模型 神经网络第二次浪潮:联结主义connectionism 神经网络的突破 二.线性代数 1. 标量.向量.矩阵和张量的一般表示方法 2. 矩阵和向量的特殊运算 3. 线性相关和生成子空间 I. 方程的解问题 II. 思路 III. 结论 IV.求解方式 4. 范数norm I. 定义和要求 II. 常用的\(L^2\)范数和平方\(L^2\…
动机 在机器学习领域中,我们常常会遇到维数很高的数据,有些数据的特征维度高达上百万维,很显然这样的数据是无法直接计算的,而且维度这么高,其中包含的信息一定有冗余,这时就需要进行降维,总的来说,我们降维的主要目的有如下几条: 在原始的高维空间中,包含有冗余信息以及噪音信息,在实际应用例如图像识别中造成了误差,降低了准确率:而通过降维,我们希望减少冗余信息所造成的误差,提高识别(或其他应用)的精度. 希望通过降维算法来寻找数据内部的本质结构特征. 通过降维来加速后续计算的速度 还有其他很多目的,如解…
概率基础和R语言 R的极客理想系列文章,涵盖了R的思想,使用,工具,创新等的一系列要点,以我个人的学习和体验去诠释R的强大. R语言作为统计学一门语言,一直在小众领域闪耀着光芒.直到大数据的爆发,R语言变成了一门炙手可热的数据分析的利器.随着越来越多的工程背景的人的加入,R语言的社区在迅速扩大成长.现在已不仅仅是统计领域,教育,银行,电商,互联网….都在使用R语言. 要成为有理想的极客,我们不能停留在语法上,要掌握牢固的数学,概率,统计知识,同时还要有创新精神,把R语言发挥到各个领域.让我们一起…
主成分分析(PCA)是一种基于变量协方差矩阵对数据进行压缩降维.去噪的有效方法,PCA的思想是将n维特征映射到k维上(k<n),这k维特征称为主元,是旧特征的线性组合,这些线性组合最大化样本方差,尽量使新的k个特征互不相关. 相关知识 介绍一个PCA的教程:A tutorial on Principal Components Analysis ——Lindsay I Smith 1.协方差 Covariance 变量X和变量Y的协方差公式如下,协方差是描述不同变量之间的相关关系,协方差>0时说…