CNN中的经典结构之AlexNet】的更多相关文章

AlexNet的基本结构 Alexnet是由5个卷积层和三个全连接层组成,一共8个权重层(池化层不是权重层因为其没有参数),其中ReLU激活函数作用在每个卷积层和全连接层上,在第一个卷积层和第二个卷积层后面连接一个局部响应规范化层,最大池化层作用在第一个卷积层,第二个卷积层和第五个卷积层的输出上. ReLU 在AlexNet结构中抛弃了传统的's'形激活函数,而是选择了修正的线性单元作为激活函数也就是relu传统的's'形激活函数有f(x)=1/(1+e-x),f(x)=tanh(x),其中si…
前言 本文主要介绍2012-2015年的一些经典CNN结构,从AlexNet,ZFNet,OverFeat到VGG,GoogleNetv1-v4,ResNetv1-v2. 在论文笔记:CNN经典结构2中我介绍了2016-2017年的几个经典CNN结构,WideResNet,FractalNet,DenseNet,ResNeXt,DPN,SENet.另外,在ImageNet历年冠军和相关CNN模型中,我简单介绍了ImageNet和历年冠军. AlexNet 贡献:ILSVRC2012冠军,展现出了…
小白的经典CNN复现(三):AlexNet 锵锵--本系列的第三弹AlexNet终于是来啦(≧∀≦),到了这里,我们的CNN的结构就基本上和现在我们经常使用或者接触的一些基本结构差不多了,并且从这一个经典模型开始,后面的模型的深度越来越高,使用的数据集也越来越大,训练难度也越来越高,模型的正确率也变得比较高,然后各个dalao们对于卷积的理解实际上也在不断加强. 然鹅······你叫我回家以后咋训练嘛(╯‵□′)╯︵┻━┻.因为家里面就只有一个笔记本,显卡也就一个1050Ti的垃圾,虽然CPU还…
前言 在论文笔记:CNN经典结构1中主要讲了2012-2015年的一些经典CNN结构.本文主要讲解2016-2017年的一些经典CNN结构. CIFAR和SVHN上,DenseNet-BC优于ResNeXt优于DenseNet优于WRN优于FractalNet优于ResNetv2优于ResNet,具体数据见CIFAR和SVHN在各CNN论文中的结果.ImageNet上,SENet优于DPN优于ResNeXt优于WRN优于ResNet和DenseNet. WideResNet( WRN ) mot…
CNN的发展史 上一篇回顾讲的是2006年Hinton他们的Science Paper,当时提到,2006年虽然Deep Learning的概念被提出来了,但是学术界的大家还是表示不服.当时有流传的段子是Hinton的学生在台上讲paper时,台下的机器学习大牛们不屑一顾,质问你们的东西有理论推导吗?有数学基础吗?搞得过SVM之类吗?回头来看,就算是真的,大牛们也确实不算无理取闹,是骡子是马拉出来遛遛,不要光提个概念. 时间终于到了2012年,Hinton的学生Alex Krizhevsky在寝…
CNN中,1X1卷积核到底有什么作用呢? https://www.jianshu.com/p/ba51f8c6e348 Question: 从NIN 到Googlenet mrsa net 都是用了这个,为什么呢? 发现很多网络使用了1X1卷积核,这能起到什么作用呢?另外我一直觉得,1X1卷积核就是对输入的一个比例缩放,因为1X1卷积核只有一个参数,这个核在输入上滑动,就相当于给输入数据乘以一个系数.不知道我理解的是否正确. Answer [ruirui_ICT]:我来说说我的理解,我认为1×1…
局部连接与权值共享 下图是一个很经典的图示,左边是全连接,右边是局部连接. 对于一个1000 × 1000的输入图像而言,如果下一个隐藏层的神经元数目为10^6个,采用全连接则有1000 × 1000 × 10^6 = 10^12个权值参数,如此数目巨大的参数几乎难以训练:而采用局部连接,隐藏层的每个神经元仅与图像中10 × 10的局部图像相连接,那么此时的权值参数数量为10 × 10 × 10^6 = 10^8,将直接减少4个数量级. 尽管减少了几个数量级,但参数数量依然较多.能不能再进一步减…
振动论坛原版主eight的经典贴http://www.chinavib.com/thread-45622-1-1.html MATLAB对于文本文件(txt)进行数据读取的技巧总结(经典中的经典)由于本帖内容较多,部分转自他人的心得,因此,凡转贴的地方仅用"----转----"标注,原作者略去,在此对所有原作者表示感谢! 特别说明:由于大家在 I/O 存取上以 txt 文件为主,且读取比存储更麻烦(存储的话 fwrite, fprintf 基本够用),因此下面的讨论主要集中在"…
如果将彩色图像和灰度图像一起放进 CNN 中去,会是什么结果? 今天,坑爹的实验,我处理 SUN397 的时候,忘记去掉灰度图了,结果,利用微调后的 model 提取 feature,悲剧的发现,无论哪个图像,得到的 feature 都是一样的,卧槽,这不科学啊... 于是乎,就将其中的灰色图像扔掉后,继续微调,至今仍未 train 完毕,等吧,待会告诉你效果,不知道是不是这个原因导致的. --------------------------- 上午出了结果:VGG-16 的训练精度也比 Ale…
声明: 1. 我和每一个应该看这篇博文的人一样,都是初学者,都是小菜鸟,我发布博文只是希望加深学习印象并与大家讨论. 2. 我不确定的地方用了"应该"二字 首先,通俗说一下,CNN的存在是为了解决两个主要问题: 1. 权值太多.这个随便一篇博文都能解释 2. 语义理解.全连接网络结构处理每一个像素时,其相邻像素与距离很远的像素无差别对待,并没有考虑图像内容的空间结构.换句话说,打乱图像像素的输入顺序,结果不变. 然后,CNN中的卷积核的一个重要特点是它是需要网络自己来学习的.这一点很简…