首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
决策树之ID3、C4.5、C5.0等五大算法
】的更多相关文章
决策树之ID3、C4.5、C5.0等五大算法
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- C5.0决策树之ID3.C4.5.C5.0算法 为了区分红蓝模块,先将能分的先划分开来(中间的红线,分为了一遍全蓝),然后再来细分(绿线). 决策树优势:为什么业务人喜欢,可以给你决策场景,因为模型可视化高,可以讲故事. 一.起源 最早的决策树算法起源于CLS(Concept Learning System)系统,即概念学习系统.它是最早的决策…
机器学习算法总结(二)——决策树(ID3, C4.5, CART)
决策树是既可以作为分类算法,又可以作为回归算法,而且在经常被用作为集成算法中的基学习器.决策树是一种很古老的算法,也是很好理解的一种算法,构建决策树的过程本质上是一个递归的过程,采用if-then的规则进行递归(可以理解为嵌套的 if - else 的条件判断过程),关于递归的终止条件有三种情形: 1)当前节点包含的样本属于同一类,则无需划分,该节点作为叶子节点,该节点输出的类别为样本的类别 2)该节点包含的样本集合为空,不能划分 3)当前属性集为空,则无法划分,该节点作为叶子节点,该节点的输出…
决策树模型 ID3/C4.5/CART算法比较
决策树模型在监督学习中非常常见,可用于分类(二分类.多分类)和回归.虽然将多棵弱决策树的Bagging.Random Forest.Boosting等tree ensembel 模型更为常见,但是“完全生长”决策树因为其简单直观,具有很强的解释性,也有广泛的应用,而且决策树是tree ensemble 的基础,值得好好理解.一般而言一棵“完全生长”的决策树包含,特征选择.决策树构建.剪枝三个过程,这篇文章主要是简单梳理比较ID3.C4.5.CART算法.<统计学习方法>中有比较详细的介绍. 一…
R_针对churn数据用id3、cart、C4.5和C5.0创建决策树模型进行判断哪种模型更合适
data(churn)导入自带的训练集churnTrain和测试集churnTest 用id3.cart.C4.5和C5.0创建决策树模型,并用交叉矩阵评估模型,针对churn数据,哪种模型更合适 决策树模型 ID3/C4.5/CART算法比较 传送门 data(churn)为R自带的训练集,这个data(chun十分特殊) 先对data(churn)训练集和测试集进行数据查询 churnTest数据 奇怪之处,不能存储它的数据,不能查看数据的维度 ,不能查看数据框中每个变量的属性!! > da…
决策树之ID3、C4.5
决策树是一种类似于流程图的树结构,其中,每个内部节点(非树叶节点)表示一个属性上的测试,每个分枝代表该测试的一个输出,而每个树叶节点(或终端节点存放一个类标号).树的最顶层节点是根节点.下图是一个典型的决策树(来自<数据挖掘:概念与技术>[韩家炜](中文第三版)第八章): 在构造决策树时,使用属性选择度量来选择将元祖划分成不同类的属性.这里我们介绍三种常用的属性选择度量-----信息增益.信息增益率和基尼指数.这里使用的符号如下.设数据分区\(S\)为标记类元组的训练集.假设类标号属性具有\(…
机器学习之决策树一-ID3原理与代码实现
决策树之系列一ID3原理与代码实现 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/9429257.html 应用实例: 你是否玩过二十个问题的游戏,游戏的规则很简单:参与游戏的一方在脑海里想某个事物,其他参与者向他提问题,只允许提20个问题,问题的答案也只能用对或错回答.问问题的人通过推断分解,逐步缩小待猜测事物的范围.决策树的工作原理与20个问题类似,用户输人一系列数据,然后给出游戏的答案.如下表 假如我告诉…
机器学习之决策树(ID3 、C4.5算法)
声明:本篇博文是学习<机器学习实战>一书的方式路程,系原创,若转载请标明来源. 1 决策树的基础概念 决策树分为分类树和回归树两种,分类树对离散变量做决策树 ,回归树对连续变量做决策树.决策树算法主要围绕两大核心问题展开:第一, 决策树的生长问题 , 即利用训练样本集 , 完成决策树的建立过程 .第二, 决策树的剪枝问题,即利用检验样本集 , 对形成的决策树进行优化处理.这里主要介绍分类树的两个经典算法:ID3算法和C4.5算法,他们都是以信息熵作为分类依据,ID3 是用信息增益,而C4.5…
决策树(ID3,C4.5,CART)原理以及实现
决策树 决策树是一种基本的分类和回归方法.决策树顾名思义,模型可以表示为树型结构,可以认为是if-then的集合,也可以认为是定义在特征空间与类空间上的条件概率分布. [图片上传失败...(image-2e6565-1543139272117)] 决策树的中间节点可以看做是对一种特征的判断,也是符合上一次判断特征某种取值的数据集,根节点代表所有数据集;叶子节点看做是判断所属的类别. 决策树学习通常包括3个步骤: 特征选择. 决策树生成和决策树剪枝. 目前常用的决策树算法有ID3, C4.5 和C…
《机器学习实战》学习笔记第三章 —— 决策树之ID3、C4.5算法
主要内容: 一.决策树模型 二.信息与熵 三.信息增益与ID3算法 四.信息增益比与C4.5算法 五.决策树的剪枝 一.决策树模型 1.所谓决策树,就是根据实例的特征对实例进行划分的树形结构.其中有两种节点:内节点表示一个特征,叶子结点表示一个类(或称为标签). 2.在决策树中,从根节点开始,对实例的所有特征进行测试,根据测试结果,选择最合适的特征作为依据,将实例分配到其子节点上:此时,每一个子节点都对应着该特征(即父节点上的特征)的一个取值.之后一直递归下去,直到所有节点上所有实例的类都一样.…
决策树(上)-ID3、C4.5、CART
参考资料(要是对于本文的理解不够透彻,必须将以下博客认知阅读,方可全面了解决策树): 1.https://zhuanlan.zhihu.com/p/85731206 2.https://zhuanlan.zhihu.com/p/29980400 3.https://github.com/Vay-keen/Machine-learning-learning-notes/blob/master/%E5%91%A8%E5%BF%97%E5%8D%8E%E3%80%8AMachine%20Learnin…