Description Solution 感谢大佬的博客https://www.cnblogs.com/ywwyww/p/8511141.html 定义dp[i]为[p[i],p[i+1])的期望经过次数,f[i]为处理完事件i后不会再回到i点或以前,直接到终点的概率. 则$dp[i]=1+(1-f[i])+(1-f[i])^{2}+......=\frac{1}{f[i]}$ 设事件i+1的胜率为k. 1:下一个事件是敌人,则f[i]=kf[i+1],即$dp[i]=\frac{dp[i+1]…
[吐槽] 首先当然是要orzyww啦 以及orzyxq奇妙顺推很强qwq 嗯..怎么说呢虽然说之前零零散散做了一些概d的题目但是总感觉好像并没有弄得比较明白啊..(我的妈果然蒟蒻) 这题的话可以说是难得的一道搞得比较清楚的概d题目吧记录一下还是挺有意思的ovo 当然咯..显然考场上并没有推出来..嗯qwq [题解] 看到说要求期望的距离,然后总的长度又被分成了一段一段的(各个事件) 所以就有一个比较直接的想法:将每一段期望走的次数算出来然后再乘上每一段的距离,加起来就是答案啦 那么现在问题来了怎…
Time Limit: 1000 ms   Memory Limit: 256 MB Description 题解 状态表示: 这题的状态表示有点难想...... 设$f_i$表示第$i$个事件经过之后,到达终点之前,不再回到事件$i$或事件$i$的左边的概率,反过来说就是可以在右边乱绕,若事件$i$的位置为pos,“右边”指的就是$(pos,h]$. 我们将第$i$个事件到第$i+1$个事件中间这一段路程记为$S_i$,那么期望经过$S_i$的次数就为$1/f_i$. 为什么是$1/f_i$呢…
Solution 我们把遇到一个旗子或者是遇到一个敌人称为一个事件. 这一题思路的巧妙之处在于我们要用\(f[i]\)表示从\(i\)这个事件一直走到终点这段路程中, \(i\)到\(i + 1\)这段路只被经过一次的概率. 分类讨论: \(i + 1\)是一个敌人, 则\(f[i] = f[i + 1] \times p[i + 1]\) \(i + 1\)是一个旗子, 则 \[f[i] = f[i + 1] \\ + f[i + 1] \times (1 - f[i + 1]) \times…
Description  Special Judge Hint 注意是全程不能经过两个相同的景点,并且一天的开始和结束不能用同样的交通方式. 题解 题目大意:给定两组点,每组有$n$个点,有若干条跨组的有色无向边.求一种方案,包括若干个不相交的连通块,覆盖全部点,每个连通块满足能一笔画(不经过重复的点)并且相邻两次经过的边颜色不相同(开头和结尾经过的边也不能相同). 是不是有点类似二分图匹配的问题呢?我们还是考虑用最大流来建图. 一笔画的时候,每一个经过的点有且只有一条入边,有且只有一条出边,即…
Solution 这是一道好题. 考虑球体的体积是怎么计算的: 我们令\(f_k(r)\)表示\(x\)维单位球的体积, 则 \[ f_k(1) = \int_{-1}^1 f_{k - 1}(\sqrt{1 - r^2}) dr \] 然而\(f_{k - 1}(\sqrt{1 - x^2})\)并不容易处理, 我们又注意到\(k\)维球体的体积可以表示为\(a \pi r^k\), 因此\(f_k(\sqrt{1 - r^2}) = f_k(1) \times (1 - r)^{\frac…
Solution 这题实际上并不是构造题, 而是一道网络流. 我们考虑题目要求的一条路径应该是什么样子的: 它是一个环, 并且满足每个点有且仅有一条出边, 一条入边, 同时这两条边的权值还必须不一样. 考虑如何建图: 我们对每个景点分别建一个点, 源点连向左岸的景点, 右岸的景点连向汇点, 边的容量都是2, 这限制了一个点最多只能连两条边; 我们再将一个点拆成\(k\)个, 每个代表一个连入的边的权值, 也就是说对于连入一个点的所有边, 都连在代表该边的权值的点上; 一个景点与其拆成的\(k\)…
Solution 这道题告诉我们, 不能看着数据范围来推测正解的时间复杂度. 事实证明, 只要常数足够小, \(5 \times 10^6\)也是可以跑\(O(n \log n)\)算法的!!! 这道题有两种思路. 比较容易想到的(也是我考场上想的)一种是: 把所有任务按照权值从大到小排序, 从权值大的开始安排, 将其安排在尽可能靠后的位置; 假如位置不够, 安排不下, 则可停止. 但这样非常难统计答案, 我想到的做法是用线段树的分裂与合并来维护整个区间. 但考虑到时间复杂度以及常数大小, 还是…
Solution 正解是一个\(\log\)的link-cut tree. 将一条边拆成两个事件, 按照事件排序, link-cut tree维护联通块大小即可. link-cut tree维护子树大小非常不熟练. 正确的做法是每个点开两个变量size和add, 分别表示在splay中以这个点为根的所有点所在的子树的点的数量, 以及以当前点为根的子树由虚边贡献的点的数量. #include <cstdio> #include <cctype> #include <algori…
Solution 考虑怎么卖最赚钱: 肯定是只卖不买啊(笑) 虽然说上面的想法很扯淡, 但它确实能给我们提供一种思路, 我们能不买就不买; 要买的时候就买最便宜的. 我们用一个优先队列来维护股票的价格, 从前往后扫描. 假设我们已经知道了到前一天的最优策略, 考虑到当前这一天的最优策略: 假如手上还有股票, 那么一定是要把它卖掉的; 假如已经没有股票了, 那么我们就在原本打算卖出的股票以及这一天的股票中选出股价最低的买入. 用优先队列维护股价, 从第一天往后扫描即可. #include <cst…