在<Spark源码分析之七:Task运行(一)>一文中,我们详细叙述了Task运行的整体流程,最终Task被传输到Executor上,启动一个对应的TaskRunner线程,并且在线程池中被调度执行.继而,我们对TaskRunner的run()方法进行了详细的分析,总结出了其内Task执行的三个主要步骤: Step1:Task及其运行时需要的辅助对象构造,主要包括: 1.当前线程设置上下文类加载器: 2.获取序列化器ser: 3.更新任务状态TaskState: 4.计算垃圾回收时间: 5.反…
在Task调度相关的两篇文章<Spark源码分析之五:Task调度(一)>与<Spark源码分析之六:Task调度(二)>中,我们大致了解了Task调度相关的主要逻辑,并且在Task调度逻辑的最后,CoarseGrainedSchedulerBackend的内部类DriverEndpoint中的makeOffers()方法的最后,我们通过调用TaskSchedulerImpl的resourceOffers()方法,得到了TaskDescription序列的序列Seq[Seq[Tas…
Spark是一个基于内存的分布式计算框架,运行在其上的应用程序,按照Action被划分为一个个Job,而Job提交运行的总流程,大致分为两个阶段: 1.Stage划分与提交 (1)Job按照RDD之间的依赖关系是否为宽依赖,由DAGScheduler划分为一个个Stage,并将每个Stage提交给TaskScheduler: (2)Stage随后被提交,并由TaskScheduler将每个stage转化为一个TaskSet: 2.Task调度与执行:由TaskScheduler负责将TaskSe…
在<Spark源码分析之Job提交运行总流程概述>一文中,我们提到了,Job提交与运行的第一阶段Stage划分与提交,可以分为三个阶段: 1.Job的调度模型与运行反馈: 2.Stage划分: 3.Stage提交:对应TaskSet的生成. 今天,我们就结合源码来分析下第一个小阶段:Job的调度模型与运行反馈. 首先由DAGScheduler负责将Job提交到事件队列eventProcessLoop中,等待调度执行.入口方法为DAGScheduler的runJon()方法.代码如下: /**…
在前四篇博文中,我们分析了Job提交运行总流程的第一阶段Stage划分与提交,它又被细化为三个分阶段: 1.Job的调度模型与运行反馈: 2.Stage划分: 3.Stage提交:对应TaskSet的生成. Stage划分与提交阶段主要是由DAGScheduler完成的,而DAGScheduler负责Job的逻辑调度,主要职责也即DAG图的分解,按照RDD间是否为shuffle dependency,将整个Job划分为一个个stage,并将每个stage转化为tasks的集合--TaskSet.…
Spark是现在很流行的一个基于内存的分布式计算框架,既然是基于内存,那么自然而然的,内存的管理就是Spark存储管理的重中之重了.那么,Spark究竟采用什么样的内存管理模型呢?本文就为大家揭开Spark内存管理模型的神秘面纱. 我们在<Spark源码分析之七:Task运行(一)>一文中曾经提到过,在Task被传递到Executor上去执行时,在为其分配的TaskRunner线程的run()方法内,在Task真正运行之前,我们就要构造一个任务内存管理器TaskMemoryManager,然后…
Netty源码分析第三章: 客户端接入流程 概述: 之前的章节学习了server启动以及eventLoop相关的逻辑, eventLoop轮询到客户端接入事件之后是如何处理的?这一章我们循序渐进, 带大家继续剖析客户端接入之后的相关逻辑 第一节:初始化NioSockectChannelConfig 在剖析接入流程之前我们首先补充下第一章有关创建channel的知识: 我们在第一章剖析过channel的创建, 其中NioServerSocketChannel中有个构造方法: public NioS…
各位看官,上一篇<Spark源码分析之Stage划分>详细讲述了Spark中Stage的划分,下面,我们进入第三个阶段--Stage提交. Stage提交阶段的主要目的就一个,就是将每个Stage生成一组Task,即TaskSet,其处理流程如下图所示: 与Stage划分阶段一样,我们还是从handleJobSubmitted()方法入手,在Stage划分阶段,包括最好的ResultStage和前面的若干ShuffleMapStage均已生成,那么顺理成章的下一步便是Stage的提交.在han…
引言 上篇 spark 源码分析之十九 -- DAG的生成和Stage的划分 中,主要介绍了下图中的前两个阶段DAG的构建和Stage的划分. 本篇文章主要剖析,Stage是如何提交的. rdd的依赖关系构成了DAG,DAGScheduler根据shuffle依赖关系将DAG图划分为一个一个小的stage.具体可以看 spark 源码分析之十九 -- DAG的生成和Stage的划分 做进一步了解. 紧接上篇文章 上篇文章中,DAGScheduler的handleJobSubmitted方法我们只…
原文链接:Spark源码分析:多种部署方式之间的区别与联系(1) 从官方的文档我们可以知道,Spark的部署方式有很多种:local.Standalone.Mesos.YARN.....不同部署方式的后台处理进程是不一样的,但是如果我们从代码的角度来看,其实流程都差不多. 从代码中,我们可以得知其实Spark的部署方式其实比官方文档中介绍的还要多,这里我来列举一下: 1.local:这种方式是在本地启动一个线程来运行作业: 2.local[N]:也是本地模式,但是启动了N个线程: 3.local…
Spark在设计上将DAGScheduler和TaskScheduler完全解耦合, 所以在资源管理和task调度上可以有更多的方案 现在支持, LocalSheduler, ClusterScheduler, MesosScheduler, YarnClusterScheduler 先分析ClusterScheduler, 即standalone的Spark集群上, 因为比较单纯不涉及其他的系统, 看看Spark的任务是如何被执行的   private var taskScheduler: T…
话说在<Spark源码分析之五:Task调度(一)>一文中,我们对Task调度分析到了DriverEndpoint的makeOffers()方法.这个方法针对接收到的ReviveOffers事件进行处理.代码如下: // Make fake resource offers on all executors // 在所有的executors上提供假的资源(抽象的资源,也就是资源的对象信息,我是这么理解的) private def makeOffers() { // Filter out exec…
继上篇<Spark源码分析之Job的调度模型与运行反馈>之后,我们继续来看第二阶段--Stage划分. Stage划分的大体流程如下图所示: 前面提到,对于JobSubmitted事件,我们通过调用DAGScheduler的handleJobSubmitted()方法来处理.那么我们先来看下代码: // 处理Job提交的函数 private[scheduler] def handleJobSubmitted(jobId: Int, finalRDD: RDD[_], func: (TaskCo…
在 spark 源码分析之二 -- SparkContext 的初始化过程 中,第 14 步 和 16 步分别描述了 TaskScheduler的 初始化 和 启动过程. 话分两头,先说 TaskScheduler的初始化过程 TaskScheduler的实例化 val (sched, ts) = SparkContext.createTaskScheduler(this, master, deployMode) 其调用了org.apache.spark.SparkContext#createT…
上篇文章 spark 源码分析之十八 -- Spark存储体系剖析 重点剖析了 Spark的存储体系.从本篇文章开始,剖析Spark作业的调度和计算体系. 在说DAG之前,先简单说一下RDD. 对RDD的整体概括 文档说明如下: RDD全称Resilient Distributed Dataset,即分布式弹性数据集.它是Spark的基本抽象,代表不可变的可分区的可并行计算的数据集. RDD的特点: 1. 包含了一系列的分区 2. 在每一个split上执行函数计算 3. 依赖于其他的RDD 4.…
如下,是 spark 源码分析系列的一些文章汇总,持续更新中...... Spark RPC spark 源码分析之五--Spark RPC剖析之创建NettyRpcEnv spark 源码分析之六--Spark RPC剖析之Dispatcher和Inbox.Outbox剖析 spark 源码分析之七--Spark RPC剖析之RpcEndPoint和RpcEndPointRef剖析 spark 源码分析之八--Spark RPC剖析之TransportContext和TransportClie…
引言 在上两篇文章 spark 源码分析之十九 -- DAG的生成和Stage的划分 和 spark 源码分析之二十 -- Stage的提交 中剖析了Spark的DAG的生成,Stage的划分以及Stage转换为TaskSet后的提交. 如下图,我们在前两篇文章中剖析了DAG的构建,Stage的划分以及Stage转换为TaskSet后的提交,本篇文章主要剖析TaskSet被TaskScheduler提交之后的Task的整个执行流程,关于具体Task是如何执行的两种stage对应的Task的执行有…
第一章.spark源码分析之RDD四种依赖关系 一.RDD四种依赖关系 RDD四种依赖关系,分别是 ShuffleDependency.PrunDependency.RangeDependency和OneToOneDependency四种依赖关系.如下图所示:org.apache.spark.Dependency有两个一级子类,分别是 ShuffleDependency 和 NarrowDependency.其中,NarrowDependency 是一个抽象类,它有三个实现类,分别是OneToO…
原文地址:http://jerryshao.me/architecture/2013/04/30/Spark%E6%BA%90%E7%A0%81%E5%88%86%E6%9E%90%E4%B9%8B-deploy%E6%A8%A1%E5%9D%97/ Background 在前文Spark源码分析之-scheduler模块中提到了Spark在资源管理和调度上采用了Hadoop YARN的方式:外层的资源管理器和应用内的任务调度器:并且分析了Spark应用内的任务调度模块.本文就Spark的外层资…
参考详细探究Spark的shuffle实现, 写的很清楚, 当前设计的来龙去脉 Hadoop Hadoop的思路是, 在mapper端每次当memory buffer中的数据快满的时候, 先将memory中的数据, 按partition进行划分, 然后各自存成小文件, 这样当buffer不断的spill的时候, 就会产生大量的小文件 所以Hadoop后面直到reduce之前做的所有的事情其实就是不断的merge, 基于文件的多路并归排序, 在map端的将相同partition的merge到一起,…
SchedulerBackend, 两个任务, 申请资源和task执行和管理 对于SparkDeploySchedulerBackend, 基于actor模式, 主要就是启动和管理两个actor Deploy.Client Actor, 负责资源申请, 在SparkDeploySchedulerBackend初始化的时候就会被创建, 然后Client会去到Master上注册, 最终完成在Worker上的ExecutorBackend的创建(参考, Spark源码分析 – Deploy), 并且这…
参考, Spark源码分析之-deploy模块   Client Client在SparkDeploySchedulerBackend被start的时候, 被创建, 代表一个application和spark cluster进行通信 Client的逻辑很简单, 封装ClientActor, 并负责该Actor的start和stop 而ClientActor的关键在于preStart的时候, 向master注册该application, 并且在执行过程中接收master发来的event /** *…
DAGScheduler的架构其实非常简单, 1. eventQueue, 所有需要DAGScheduler处理的事情都需要往eventQueue中发送event 2. eventLoop Thread, 会不断的从eventQueue中获取event并处理 3. 实现TaskSchedulerListener, 并注册到TaskScheduler中, 这样TaskScheduler可以随时调用TaskSchedulerListener中的接口报告状况变更 TaskSchedulerListen…
本篇文章主要剖析BlockManager相关的类以及总结Spark底层存储体系. 总述 先看 BlockManager相关类之间的关系如下: 我们从NettyRpcEnv 开始,做一下简单说明. NettyRpcEnv是Spark 的默认的RpcEnv实现,它提供了个Spark 集群各个节点的底层通信环境,可以参照文章 spark 源码分析之十二--Spark RPC剖析之Spark RPC总结 做深入了解. MemoryManager 主要负责Spark内存管理,可以参照 spark 源码分析…
spark 源码分析之八--Spark RPC剖析之TransportContext和TransportClientFactory剖析 TransportContext 首先官方文档对TransportContext的说明如下: Contains the context to create a TransportServer, TransportClientFactory, and to setup Netty Channel pipelines with a TransportChannelH…
TransportClient类说明 先来看,官方文档给出的说明: Client for fetching consecutive chunks of a pre-negotiated stream. This API is intended to allow efficient transfer of a large amount of data, broken up into chunks with size ranging from hundreds of KB to a few MB. …
原创文章,转载请注明: 转载自http://www.cnblogs.com/tovin/p/3879151.html 在SparkContext创建过程中会调用createTaskScheduler函数来启动TaskScheduler任务调度器,本文就详细分析TaskScheduler的工作原理: TaskScheduler会根据部署方式而选择不同的SchedulerBackend来处理 下图展示了TaskScheduler.TaskSchedulerImpl.SchedulerBackend等…
原创文章,转载请注明: 转载自http://www.cnblogs.com/tovin/p/3868718.html 本文主要分享一下如何构建Spark源码分析环境.以前主要使用eclipse来阅读源码的,但是针对用scala写的spark来说不是太方便.最近开始转向使用idea 首先http://www.jetbrains.com/idea/下载安装idea 选择File->Settings->Plugins->Install JetBrain plugin安装scala插件…
继上次的Spark-shell脚本源码分析,还剩下后面半段.由于上次涉及了不少shell的基本内容,因此就把trap和stty放在这篇来讲述. 上篇回顾:Spark源码分析之Spark Shell(上) function main() { if $cygwin; then # Workaround for issue involving JLine and Cygwin # (see http://sourceforge.net/p/jline/bugs/40/). # If you're us…
有了前面spark-shell的经验,看这两个脚本就容易多啦.前面总结的Spark-shell的分析可以参考: Spark源码分析之Spark Shell(上) Spark源码分析之Spark Shell(下) Spark-submit if [ -z "${SPARK_HOME}" ]; then export SPARK_HOME="$(cd "`dirname "$0"`"/..; pwd)" fi # disable…