(原)GAN之pix2pix】的更多相关文章

转载请注明出处: https://www.cnblogs.com/darkknightzh/p/9175281.html 论文: Image-to-Image Translation with Conditional Adversarial Networks https://arxiv.org/pdf/1611.07004v1.pdf 代码: 官方project:https://phillipi.github.io/pix2pix/ 官方torch代码:https://github.com/ph…
这里简短地谈一下如题的三篇论文: 参考:https://blog.csdn.net/gdymind/article/details/82696481 (1)pix2pix:从一张图片生成另一张图片 pipeline如下,其中generator为U-net: (2)Cycle GAN:pix2pix需要成对图片训练,CycleGAN解决了这个问题,可以不成对,但要同类! pipeline如下: (3)pix2pix HD 参考:https://www.jianshu.com/p/eb29a264c…
GAN Theory Modifyingthe Optimization of GAN 题目 内容 GAN   DCGAN   WGAN   Least-square GAN   Loss Sensitive GAN   Energy-based GAN   Boundary-seeking GAN   Unroll GAN   Different Structure from the Original GAN 题目 内容 Conditional GAN   Semi-supervised GA…
https://juejin.im/post/5d3fb44e6fb9a06b2e3ccd4e 生成对抗网络(GAN)是生成模型的一种神经网络架构. 生成模型指在现存样本的基础上,使用模型来生成新案例,比如,基于现存的照片集生成一组与其相似却有细微差异的新照片. GAN是使用两个神经网络模型训练而成的一种生成模型.其中一个称为"生成器"或"生成网络"模型,可学习生成新的可用案例.另一个称为"判别器"或"判别网络",可学习判别生…
Libo1575899134@outlook.com Libo (原创文章,转发请注明作者) 本文章主要介绍Gan的应用篇,3,主要介绍图像应用,4, 主要介绍文本以及医药化学其他领域应用 原理篇请看上两篇 https://www.cnblogs.com/Libo-Master/p/11167804.html https://www.cnblogs.com/Libo-Master/p/11169198.html ------------------------------------------…
对于分割网络,如果当成一个黑箱就是:输入一个3x1024x1024 输出4x1024x1024. 我没有使用二分类,直接使用了四分类. 分类网络使用了SegNet,没有加载预训练模型,参数也是默认初始化.为了加快训练,1024输入进网络后直接通过 pooling缩小到256的尺寸,等到输出层,直接使用bilinear放大4倍,相当于直接在256的尺寸上训练. import os import urllib import torch import torch.nn as nn import tor…
来源:Analytics Vidhya 编译:磐石 [磐创AI导读]:Github是全球最大的开源代码社区,Reddit是最受大家欢迎的热点讨论交流平台.接下来磐创AI将为大家带来四月份Github最佳项目库介绍与Reddit热点评论一览. 目录 介绍 Github月度最佳项目库 Reddit热点讨论 介绍 对于数据科学和机器学习,GitHub和Reddit也许是两个最受欢迎的平台.前者是在代码和项目之间共享和协作的绝佳工具,而后者则是与全球数据科学爱好者交流互动的最佳平台之一. 在4月份,有一…
1. 从纳什均衡(Nash equilibrium)说起 我们先来看看纳什均衡的经济学定义: 所谓纳什均衡,指的是参与人的这样一种策略组合,在该策略组合上,任何参与人单独改变策略都不会得到好处.换句话说,如果在一个策略组合上,当所有其他人都不改变策略时,没有人会改变自己的策略,则该策略组合就是一个纳什均衡. B站上有一个关于”海滩2个兄弟卖雪糕“形成纳什均衡的视频,讲的很生动. 不管系统中的双方一开始处于什么样的状态,只要系统中参与竞争的个体都是”理性经济人“,即每个人在考虑其他人的可能动作的基…
本文转载自:魔图互联.欢迎访问网站查看详细教程:Tensorflow(pytorch)系列教程 生成对抗网络是深度学习中最有趣和最受欢迎的应用之一.本文将列出 10 篇关于 GAN 的论文,这些论文详细介绍了 GAN,以及了解最新技术的基础. 目录: DCGAN Improved Techniques for Training GANs Conditional GANs Progressively Growing GANs BigGAN StyleGAN CycleGAN Pix2Pix Sta…
同步自我的知乎专栏:https://zhuanlan.zhihu.com/p/27199954 作为一名久经片场的老司机,早就想写一些探讨驾驶技术的文章.这篇就介绍利用生成式对抗网络(GAN)的两个基本驾驶技能: 1) 去除(爱情)动作片中的马赛克 2) 给(爱情)动作片中的女孩穿(tuo)衣服 生成式模型 上一篇<用GAN生成二维样本的小例子>中已经简单介绍了GAN,这篇再简要回顾一下生成式模型,算是补全一个来龙去脉. 生成模型就是能够产生指定分布数据的模型,常见的生成式模型一般都会有一个用…
用MXNet实现mnist的生成对抗网络(GAN) 生成式对抗网络(Generative Adversarial Network,简称GAN)由一个生成网络与一个判别网络组成.生成网络从潜在空间(latent space)中随机采样作为输入,其输出结果需要尽量模仿训练集中的真实样本.判别网络的输入则为真实样本或生成网络的输出,其目的是将生成网络的输出从真实样本中尽可能分辨出来.而生成网络则要尽可能地欺骗判别网络.两个网络相互对抗.不断调整参数,最终目的是使判别网络无法判断生成网络的输出结果是否真…
我对GAN"生成对抗网络"(Generative Adversarial Networks)的看法: 前几天在公开课听了新加坡国立大学[机器学习与视觉实验室]负责人冯佳时博士在[硬创公开课]的GAN分享.GAN现在对于无监督图像标注来说是个神器,不过在NLP领域用的还不是那么广泛. 笔者看来,深度学习之前都没有对数组分布进行细致考察,譬如之前我对NLP词向量就产生过很多疑虑,为啥这么长条的数据组,没看到很好地去深挖.解读词向量的分布?分布这么重要,不值得Dig Deep? 生成模型GA…
生成式对抗网络(GAN)是近年来大热的深度学习模型.最近正好有空看了这方面的一些论文,跑了一个GAN的代码,于是写了这篇文章来介绍一下GAN. 本文主要分为三个部分: 介绍原始的GAN的原理 同样非常重要的DCGAN的原理 如何在Tensorflow跑DCGAN的代码,生成如题图所示的动漫头像,附送数据集哦 :-) GAN原理介绍 说到GAN第一篇要看的paper当然是Ian Goodfellow大牛的Generative Adversarial Networks(arxiv:https://a…
图像识别和自然语言处理是目前应用极为广泛的AI技术,这些技术不管是速度还是准确度都已经达到了相当的高度,具体应用例如智能手机的人脸解锁.内置的语音助手.这些技术的实现和发展都离不开神经网络,可是传统的神经网络只能解决关于辨识的问题,并不能够为机器带来自主创造的能力,例如让机器写出一篇流畅的新闻报道,生成一副美丽的风景画.但随着GAN的出现,这些都成为了可能. 什么是GAN? 生成式对抗网络(GAN, Generative Adversarial Networks)是一种近年来大热的深度学习模型,…
GAN这一概念是由Ian Goodfellow于2014年提出,并迅速成为了非常火热的研究话题,GAN的变种更是有上千种,深度学习先驱之一的Yann LeCun就曾说,"GAN及其变种是数十年来机器学习领域最有趣的idea".那么什么是GAN呢?GAN的应用有哪些呢?GAN的原理是什么呢?怎样去实现一个GAN呢?本文将一一阐述.具体大纲如下: 1.什么是GAN? 1.1 对抗思想--啵啵鸟与枯叶蝶 1.2 GAN思想--画画的演变 1.3 零和博弈(zero-sum game) 1.4…
学习总结于国立台湾大学 :李宏毅老师 Author: Ian Goodfellow • Paper: https://arxiv.org/abs/1701.00160 • Video: https://channel9.msdn.com/Events/Neural-Information-Processing-Systems-Conference/Neural-Information-Processing-Systems-Conference-NIPS-2016/Generative-Adver…
中文版:https://zhuanlan.zhihu.com/p/27440393 原文版:https://www.oreilly.com/learning/generative-adversarial-networks-for-beginners “熟练tensorflow后,需研读实践的文章” 自从两年前蒙特利尔大学的Ian Goodfellow等人提出生成式对抗网络(Generative Adversarial Networks,GAN)的概念以来,GAN呈现出井喷式发展. // 竟然是G…
/** * lihaibo * 文章内容都是根据自己工作情况实践得出. * 版权声明:本博客欢迎转发,但请保留原作者信息! http://www.cnblogs.com/horizonli/p/5332645.html */ 一.使用maven编译 (maven编译  与 测试 test 和打包 package 和 部署 install 类似,不再赘述 ) 在项目的配置页面中有个maven配置:里面只有一个clean   就是清除以前的构建信息: 之前我使用了clean   package来编译…
本文转自: https://mp.weixin.qq.com/s?__biz=MzA5MDMwMTIyNQ==&mid=2649290778&idx=1&sn=9816b862e167c4792f4251c199fcae16&chksm=8811ee5cbf66674a54e87bc3cef4937da6e5aac7599807754731ab777d359b219ac6de97616e&mpshare=1&scene=2&srcid=0219a2e…
本文转自:https://mp.weixin.qq.com/s?__biz=MzIwMTgwNjgyOQ==&mid=2247484846&idx=1&sn=c2333a9986c19e7106ae94d14a0555b9 能根据文字生成图片的 GAN,深度学习领域的又一新星 2017-01-12 DataCastle数据城堡 2014 年 6 月,Ian Goodfellow 等学者发表了论文<Generative Adversarial Nets>,题目即“生成对抗…
from:https://www.sohu.com/a/159976204_717210 GAN 从 2014 年诞生以来发展的是相当火热,比较著名的 GAN 的应用有 Pix2Pix.CycleGAN 等.本篇文章主要是让初学者通过代码了解 GAN 的结构和运作机制,对理论细节不做过多介绍.我们还是采用 MNIST 手写数据集(不得不说这个数据集对于新手来说非常好用)来作为我们的训练数据,我们将构建一个简单的 GAN 来进行手写数字图像的生成. 认识 GAN GAN 主要包括了两个部分,即生成…
0. introduction GAN模型最早由Ian Goodfellow et al于2014年提出,之后主要用于signal processing和natural document processing两方面,包含图片.视频.诗歌.一些简单对话的生成等.由于文字在高维空间上不连续的问题(即任取一个word embedding向量不一定能找到其所对应的文字),GAN对于NLP的处理不如图像的处理得心应手,并且从本质上讲,图片处理相较于NLP更为简单(因为任何动物都可以处理图像,但只有人类可以…
通常的图像转换模型(如 StarGAN.CycleGAN.IcGAN)无法实现同时训练,不同的转换配对也不能组合.在本文中,英属哥伦比亚大学(UBC)与腾讯 AI Lab 共同提出了一种新型的模块化多域生成对抗网络架构——ModularGAN,生成的结果优于以上三种基线结果.该架构由几个可重复利用和可组合的模块组成.不同的模块可以在测试时轻松组合,以便在不同的域中高效地生成/转换图像.研究者称,这是首个模块化的 GAN 架构. 据了解,腾讯 AI Lab 共有 19 篇论文入选 ECCV 201…
生成对抗网络(GAN),是深度学习模型之一,2014年lan Goodfellow的开篇之作Generative Adversarial Network, GAN概述 GAN包括两个模型,一个是生成模型(generative model),一个是判别模型(discriminative model).生成模型要做的事情就是生成看起来真的和原始数据相似的实例,判断模型就是判断给定的实例是生成的还是真实的(真实实例来源于数据集,伪造实例来源于生成模型). 生成器试图欺骗判别器,判别器则努力不被生成器欺…
前段时间,Wasserstein GAN以其精巧的理论分析.简单至极的算法实现.出色的实验效果,在GAN研究圈内掀起了一阵热潮(对WGAN不熟悉的读者,可以参考我之前写的介绍文章:令人拍案叫绝的Wasserstein GAN - 知乎专栏).但是很多人(包括我们实验室的同学)到了上手跑实验的时候,却发现WGAN实际上没那么完美,反而存在着训练困难.收敛速度慢等问题.其实,WGAN的作者Martin Arjovsky不久后就在reddit上表示他也意识到了这个问题,认为关键在于原设计中Lipsch…
感觉好厉害,由上图噪声,生成左图噪声生成右图以假乱真的图片, gan网络原理: 本弱又盗了一坨博文,不是我写的,如下:(跪膜各路大神) 前面我们已经讲完了一般的深层网络,适用于图像的卷积神经网络,适用于序列的循环神经网络.但是要知道Lecun提出第一代卷积网络Lenet的时间是1998年,而循环神经网络提出的时间更早,是在1986年.这些网络在当时并没有火起来,如今随着计算能力的加强,数据集的增多,深度学习逐渐火了起来,随着越来越多的人的研究,各种各样的神经网络都在不断进步,CNN里面出现了in…
把GAN的论文看完了, 也确实蛮厉害的懒得写笔记了,转一些较好的笔记,前面先贴一些 原论文里推理部分,进行备忘. GAN的解释 算法流程 GAN的理论推理 转自:https://zhuanlan.zhihu.com/p/27295635 Generative Adversarial Network,就是大家耳熟能详的GAN,由Ian Goodfellow首先提出,在这两年更是深度学习中最热门的东西,仿佛什么东西都能由GAN做出来.我最近刚入门GAN,看了些资料,做一些笔记. 1.Generati…
GAN:通过 将 样本 特征 化 以后, 告诉 模型 哪些 样本 是 黑 哪些 是 白, 模型 通过 训练 后, 理解 了 黑白 样本 的 区别, 再输入 测试 样本 时, 模型 就可以 根据 以往 的 经验 判断 是 黑 还是 白. 与 这些 分类 的 算法 不同, GAN 的 基本 原理 是, 有两 个 相生相克 的 模型 Generator 和 Discriminator,Generator 随机 生成 样本, Discriminator 将 真实 样本 标记 为 Real, 将 Gene…
深入浅出 GAN·原理篇文字版(完整)|干货 from:http://baijiahao.baidu.com/s?id=1568663805038898&wfr=spider&for=pc 百家号17-05-2902:02 导语 这次的内容主要是想梳理 GAN 从 NIPS 2014 被提出,到 2017年5月,都有哪些重要的从原理和方法上的重要研究.一共覆盖了25篇重要论文(论文列表见本文最下方). 引言:GAN的惊艳应用 首先来看看 GAN 现在能做到哪些惊艳的事呢? GAN 可以被用…
转自:https://zhuanlan.zhihu.com/p/24767059,感谢分享 生成式对抗网络(GAN)是近年来大热的深度学习模型.最近正好有空看了这方面的一些论文,跑了一个GAN的代码,于是写了这篇文章来介绍一下GAN. 本文主要分为三个部分: 介绍原始的GAN的原理 同样非常重要的DCGAN的原理 如何在Tensorflow跑DCGAN的代码,生成如题图所示的动漫头像,附送数据集哦 :-) 一.GAN原理介绍 说到GAN第一篇要看的paper当然是Ian Goodfellow大牛…