一.简介 Python for Data Analysis这本书的特点是将numpy和pandas这两个工具介绍的很详细,这两个工具是使用Python做数据分析非常重要的一环,numpy主要是做矩阵的运算,pandas主要是做数据的预处理,另外本书还教了其他数据分析相关的工具,比如matplotlib用来作图,iPython用来测试.调试代码.本书着重在工具介绍,所以在阅读前最好要对数据分析的理论有一定的了解. 二.Jupyter和Python的介绍 Jupyter是结合代码输入.运行到结果显示…
一.文字处理 之前在练习爬虫时,常常爬了一堆乱七八糟的字符下来,当时就有找网络上一些清洗数据的方式,这边pandas也有提供一些,可以参考使用看看.下面为两个比较常见的指令,往往会搭配使用. split(“,”)可以将文字串分割,冒号里的为分割依据,左边的代码就是把两个冒号中间的文字串视为一个单元. strip()去除空白符号. 1.正则表达式 正则表达式为处理文字搜索匹配的功能,python可以直接导入re模块来使用.用法为下. 可直接用split来编译再拆解,也可以先用compile编译,再…
一.Pandas文件读写 pandas很核心的一个功能就是数据读取.导入,pandas支援大部分主流的数据储存格式,并在导入的时候可以做筛选.预处理.在读取数据时的选项有超过50个参数,可见pandas对于各式各样的数据都能有非常好的应对能力.下面先介绍基本的读取指令. 前面两个read_csv和read_table是用的比较多的两种.下面为实际操作的范例. 当然大部分的时候数据导入不会这么顺利,因为源数据里可能会有多种的分离方式,里面还会夹杂一些脏数据,所以pandas附上了一些选项来帮助导入…
一.pandas介绍 本篇程序上篇内容,在numpy下面继续介绍pandas,本书的作者是pandas的作者之一.pandas是非常好用的数据预处理工具,pandas下面有两个数据结构,分别为Series和DataFrame,DataFrame之前我在一些实战案例中有用过,下面先对这两个数据结构做介绍. 二.Series Series最简单的一个功能就是对一组数字打上ID,用法为下 可以看到Series会自动把数字打上0~3对应的ID,也可以对ID自定义名称 这样就可以用key-value的形式…
<Python for Data Analysis>一书由Wes Mckinney所著,中文译名是<利用Python进行数据分析>.这里记录一下学习过程,其中有些方法和书中不同,是按自己比较熟悉的方式实现的. 第一个实例:1.usa.gov data from bit.ly 简介:2011年,URL缩短服务bit.ly和美国政府网站usa.gov合作,提供了一份从生成.gov或.mil短链接用户那里收集来的匿名数据 数据下载地址:https://github.com/wesm/py…
<Python for Data Analysis>一书由Wes Mckinney所著,中文译名是<利用Python进行数据分析>.这里记录一下学习过程,其中有些方法和书中不同,是按自己比较熟悉的方式实现的. 第四个实例:USDA Food Database 简介:美国农业部(USDA)制作了一份有关食物营养信息的数据 数据下载地址: https://github.com/wesm/pydata-book/tree/2nd-edition/datasets/usda_food 准备…
<Python for Data Analysis>一书由Wes Mckinney所著,中文译名是<利用Python进行数据分析>.这里记录一下学习过程,其中有些方法和书中不同,是按自己比较熟悉的方式实现的. 第三个实例:US Baby Names 1880-2010 简介: 美国社会保障总署(SSA)提供了一份从1880年到2010年的婴儿姓名频率的数据 数据地址: https://github.com/wesm/pydata-book/tree/2nd-edition/data…
<Python for Data Analysis>一书由Wes Mckinney所著,中文译名是<利用Python进行数据分析>.这里记录一下学习过程,其中有些方法和书中不同,是按自己比较熟悉的方式实现的. 第二个实例:MovieLens 1M Data Set 简介: GroupLens Research提供了从MovieLens用户那里收集来的一系列对90年代电影评分的数据 数据地址:http://files.grouplens.org/datasets/movielens/…
Python for Data Analysis, 2nd Edition https://www.safaribooksonline.com/library/view/python-for-data/9781491957653/ Get complete instructions for manipulating, processing, cleaning, and crunching datasets in Python. Updated for Python 3.6, the second…
1.2 Why Python for Data Analysis?(为什么使用Python做数据分析) 这节我就不进行过多介绍了,Python近几年的发展势头是有目共睹的,尤其是在科学计算,数据处理,AI方面,否则大家也不会来看这本书了. 使用Python的一些优点 Python是一门胶水语言,可以把不同语言整合起来,比如上层代码使用Python编写,底层代码用C,C++等语言实现. 解决了两种语言的问题.以前做研究用一门语言写原型(比如R,SAS),效果好了才会用其他语言去重新实现一遍(比如J…
<利用python进行数据分析>一书的第五章源码与读书笔记 直接上代码 # -*- coding:utf-8 -*-# <python for data analysis>第五章, pandas基础# 高级数据结构与操作工具 import pandas as pdimport numpy as npimport time start = time.time()# pandas的数据结构, series and dataframe# 1.series,类似一维数据, 一个字典,建立了…
< python for data analysis >一书的第十章例程, 主要介绍时间序列(time series)数据的处理.label:1. datetime object.timestamp object.period object2. pandas的Series和DataFrame object的两种特殊索引:DatetimeIndex 和 PeriodIndex3. 时区的表达与处理4. imestamp object.period object的频率概念,及其频率转换5. 两种频…
<利用Python进行数据分析>第七章的代码. # -*- coding:utf-8 -*-# <python for data analysis>第七章, 数据规整化 import pandas as pdimport numpy as npimport time start = time.time()# 1.合并数据集,有merge.join.concat三种方式# 1.1.数据库风格的dataframe合并(merge & join)# merge函数将两个dataf…
<利用python进行数据分析>第四章的程序,介绍了numpy的基本使用方法.(第三章为Ipython的基本使用) 科学计算.常用函数.数组处理.线性代数运算.随机模块…… # -*- coding:utf-8 -*-# <python for data analysis>第四章, numpy基础# 数组与矢量计算import numpy as npimport time # 开始计时start = time.time() # 创建一个arraydata = np.array([[…
loadrunner学习笔记-01事务<转载至网络> 事务又称为Transaction,事务是一个点为了衡量某个action的性能,需要在开始和结束位置插入一个范围,定义这样一个事务. 作用:LoadRunner运行到该事务的开始点时,LoadRunner就会开始计时,直到运行到该事务的结束点,计时结束.这个事务的运行时间在LoadRunner的运行结果中会有反映.通俗的讲LoadRunner中的事务就是一个计时标识,LoadRunner在运行过程中一旦发现事务的开始标识,就开始计时,一旦发现…
# -*- coding:utf-8 -*-# <python for data analysis>第九章# 数据聚合与分组运算import pandas as pdimport numpy as npimport time # 分组运算过程 -> split-apply-combine# 拆分 应用 合并start = time.time()np.random.seed(10)# 1.GroupBy技术# 1.1.引文df = pd.DataFrame({ 'key1': ['a',…
探索性数据分析(Exploratory Data Analysis,EDA)主要的工作是:对数据进行清洗,对数据进行描述(描述统计量,图表),查看数据的分布,比较数据之间的关系,培养对数据的直觉,对数据进行总结等. 探索性数据分析(EDA)与传统统计分析(Classical Analysis)的区别: 传统的统计分析方法通常是先假设样本服从某种分布,然后把数据套入假设模型再做分析.但由于多数数据并不能满足假设的分布,因此,传统统计分析结果常常不能让人满意. 探索性数据分析方法注重数据的真实分布,…
C++ GUI Qt4学习笔记01   qtc++signalmakefile文档平台 这一章介绍了如何把基本的C++只是与Qt所提供的功能组合起来创建一些简单的图形用户界面应用程序. 引入两个重要概念:一个是“信号和槽”,另一个是“布局”. 窗口部件(widget)是用户界面的一个可视化元素,相当于windows系统中的“控件”和“容器”.任意窗口部件都可以用作窗口. 1.1Hello Qt 正确安装Qt4开发环境,创建工程目录hello,源代码文件名为hello.cpp,进入hello目录…
SaToken学习笔记-01 SaToken版本为1.18 如果有排版方面的错误,请查看:传送门 springboot集成 根据官网步骤maven导入依赖 <dependency> <groupId>cn.dev33</groupId> <artifactId>sa-token-spring-boot-starter</artifactId> <version>1.18.0</version> </dependenc…
Redis:学习笔记-01 该部分内容,参考了 bilibili 上讲解 Redis 中,观看数最多的课程 Redis最新超详细版教程通俗易懂,来自 UP主 遇见狂神说 1. Redis入门 2.1 概述 Redis 是什么 Redis(Remote Dictionary Server ),即远程字典服务. 是一个开源的使用 ANSI C 语言编写.支持网络.可基于内存亦可持久化的日志型.Key-Value数据库,并提供多种语言的API. Redis 会周期性的把更新的数据写入磁盘或者把修改操作…
NoteBook of <Data Analysis with Python> 3.IPython基础 Tab自动补齐 变量名 变量方法 路径 解释 ?解释, ??显示函数源码 ?搜索命名空间 %run命令 %run 执行所有文件 %run -i 访问变量 Ctrl-C中断执行 %paste可以粘贴剪切板的一切文本 一般使用%cpaste因为可以改 键盘快捷键 魔术命令 %timeit 检测任意语句的执行时间 %magic显示魔术命令的详细文档 %xdel v 删除变量,并清除其一切引用 注册…
pandas and numpy notebook        最近工作交接,整理电脑资料时看到了之前的基于Jupyter学习数据分析相关模块学习笔记.想着拿出来分享一下,可是Jupyter导出来html文件,博客园不支持js注入,贴图效果实在太差劲儿.所以只贴了内容,要是有需要文件原版(pdf.md.html等)可以在评论区说一下.        本系列是数据分析相关的,打算做一个持续连载,后边便于自己系统查看和回顾. 另外,本片博客在github上有PDF版本,并且格式也很清爽,请转htt…
Data Analysis with Python ch02 一些有趣的数据分析结果 Male描述的是美国新生儿男孩纸的名字的最后一个字母的分布 Female描述的是美国新生儿女孩纸的名字的最后一个字母的分布…
<深入浅出数据分析>英文名为Head First Data Analysis Code, 这本书中提供了学习使用的数据和程序,原书链接由于某些原因不 能打开,这里在提供一个下载的链接.去下面的网页中可以找到到链接,不知道为什么博客中不能插入csdn的链接. https://www.zybuluo.com/Jpz/note/153697 压缩包中包含的文件如下: bathing_friends_unlimited.xls hfda.R hfda_ch04_home_page1.csv hfda_…
这是我的vue.js 2.0的学习笔记,采取了将官方文档中的代码集中到一个文件的形式.目的是保存下来,方便自己查阅. !官方文档:https://cn.vuejs.org/v2/guide/ 01. vue 介绍 <html> <head> <meta charset="utf-8"/> <title>vue 介绍</title> <!-- <script src="js/vue.min.js"…
python的文件处理函数是open() 以下主要是关于这个函数的一些学习笔记 1.文件处理离不开编码 要注意的是文件打开时的编码和文件保存时的编码的统一,这样才能保证你打开的文件不会存在乱码 总结:创建文件.打开读取文件.写文件保存文件时的编码必须统一,否则可能存在乱码问题 2.操作文件时要有始有终 意思就是当你打开文件的时候,要记得关闭文件操作.否则会浪费系统的资源. 3.open函数(重点) (1).open的语法 open('文件路径','操作模式','编码') 例子: new_file…
例子: 为什么要学PHP 主观原因: 前段时间在学校处理了毕业的一些事情,回到上海后开始了找工作的旅程.意向工作是WPF开发或者ASP.NET 作为后端的WEB开发. 陆陆续续一直在面试,其中有一家公司很有意思,以招.net开发为名,实际在招收PHP开发(于面试通知中告知的).去面试之后觉得蛮不错,但还是想再面试几天,故而,接下来的几天中,一边面试,一边自学PHP,以便于在最终的决定是去这家公司后,更快速的入职. 客观原因: 来自Quora:PHP相对于其它语言有哪些优点呢? 使用LAMP搭建自…
这是我跟着虫师学习中积累下来的学习笔记,写得比较简单,适合想学习Python开发与接口测试的初学者学习. 一.开发投票系统 1.参考官网文档,创建投票系统. https://docs.djangoproject.com/en/1.11/intro/tutorial01/ 在创建投票系统之前,要确认自己安装的Django和官网的文档是一致的. ==================== win 10 Python 3.6.2 Django 1.11.3 Pycharm编译器 ============…
1.1数据分析概述 1.1.1数据分析的原则 (1)数据分析是为了验证假设的问题,需要提供必要的数据验证.在数据分析中,分析模型构建完成后,需要利用测试数据验证模型的正确性. (2)数据分析是为了挖掘更多的问题,并找到深层次的原因. (3)不能为了做数据分析而做数据分析. 1.1.2数据分析的步骤 (1)探索性数据分析EDA 从多种渠道获得了大量的可能杂乱无章.看不出规律的数据的时候,首先需要在没有多少经验的情况下第一次对其进行仔细的分析.这时就需要进行探索性数据分析(EDA: Explorat…
OGG学习笔记01-基础概述OGG(Oracle Golden Gate),最近几年在数据同步.容灾领域特别火,甚至比Oracle自己的原生产品DataGuard还要风光,主要是因为其跨平台.跨数据库.跨版本的强大特性. OGG理论概念 我们可以搜索到网上对它的简单介绍: Oracle Golden Gate软件是一种基于日志的结构化数据复制备份软件,它通过解析源数据库在线日志或归档日志获得数据的增量变化,再将这些变化应用到目标数据库,从而实现源数据库与目标数据库同步.Oracle Golden…