注意力机制(Attention Mechanism)在自然语言处理中的应用 本文转自:http://www.cnblogs.com/robert-dlut/p/5952032.html  近年来,深度学习的研究越来越深入,在各个领域也都获得了不少突破性的进展.基于注意力(attention)机制的神经网络成为了最近神经网络研究的一个热点,本人最近也学习了一些基于attention机制的神经网络在自然语言处理(NLP)领域的论文,现在来对attention在NLP中的应用进行一个总结,和大家一起分…
注意力机制(Attention Mechanism)在自然语言处理中的应用 近年来,深度学习的研究越来越深入,在各个领域也都获得了不少突破性的进展.基于注意力(attention)机制的神经网络成为了最近神经网络研究的一个热点,本人最近也学习了一些基于attention机制的神经网络在自然语言处理(NLP)领域的论文,现在来对attention在NLP中的应用进行一个总结,和大家一起分享. 1 Attention研究进展 Attention机制最早是在视觉图像领域提出来的,应该是在九几年思想就提…
这篇文章整理有关注意力机制(Attention Mechanism )的知识,主要涉及以下几点内容: 1.注意力机制是为了解决什么问题而提出来的? 2.软性注意力机制的数学原理: 3.软性注意力机制.Encoder-Decoder框架与Seq2Seq 4.自注意力模型的原理. 一.注意力机制可以解决什么问题? 神经网络中的注意力机制(Attention Mechanism)是在计算能力有限的情况下,将计算资源分配给更重要的任务,同时解决信息超载问题的一种资源分配方案.在神经网络学习中,一般而言模…
近年来,注意力(Attention)机制被广泛应用到基于深度学习的自然语言处理(NLP)各个任务中.随着注意力机制的深入研究,各式各样的attention被研究者们提出,如单个.多个.交互式等等.去年6月,google机器翻译团队在arXiv上的<Attention is all you need>论文受到了大家广泛关注,其中,他们提出的自注意力(self-attention)机制和多头(multi-head)机制也开始成为神经网络attention的研究热点,在各个任务上也取得了不错的效果.…
近年来,深度学习的研究越来越深入,在各个领域也都获得了不少突破性的进展.基于注意力(attention)机制的神经网络成为了最近神经网络研究的一个热点,下面是一些基于attention机制的神经网络在自然语言处理(NLP)领域的论文,现在来对attention在NLP中的应用进行一个总结,和大家一起分享. 1 Attention研究进展 Attention机制最早是在视觉图像领域提出来的,应该是在九几年思想就提出来了,但是真正火起来应该算是google mind团队的这篇论文<Recurrent…
注意力机制之Attention Augmented Convolutional Networks 原始链接:https://www.yuque.com/lart/papers/aaconv 核心内容 We propose to augment convolutional operators with this self-attention mechanism by concatenating convolutional feature maps with a set of feature map…
自然语言处理中的自注意力机制(Self-attention Mechanism) 近年来,注意力(Attention)机制被广泛应用到基于深度学习的自然语言处理(NLP)各个任务中,之前我对早期注意力机制进行过一些学习总结(可见http://www.cnblogs.com/robert-dlut/p/5952032.html).随着注意力机制的深入研究,各式各样的attention被研究者们提出.在2017年6月google机器翻译团队在arXiv上放出的<Attention is all yo…
近年来,注意力(Attention)机制被广泛应用到基于深度学习的自然语言处理(NLP)各个任务中.随着注意力机制的深入研究,各式各样的attention被研究者们提出.在2017年6月google机器翻译团队在arXiv上放出的<Attention is all you need>论文受到了大家广泛关注,自注意力(self-attention)机制开始成为神经网络attention的研究热点,在各个任务上也取得了不错的效果.对这篇论文中的self-attention以及一些相关工作进行了学习…
前言: 最近几年,注意力机制用来提升模型性能有比较好的表现,大家都用得很舒服.本文将介绍一种新提出的坐标注意力机制,这种机制解决了SE,CBAM上存在的一些问题,产生了更好的效果,而使用与SE,CBAM同样简单. 论文地址: https://arxiv.org/pdf/2103.02907.pdf 代码地址: https://github.com/AndrewQibin/CoordAttention Introduction 大部分注意力机制用于深度神经网络可以带来很好的性能提升,但这些注意力机…
前言 这一章看啥视频都不好使,啃书就完事儿了,当然了我也没有感觉自己学的特别扎实,不过好歹是有一定的了解了 注意力机制 由于之前的卷积之类的神经网络,选取卷积中最大的那个数,实际上这种行为是没有目的的,因为你不知道那个最大的数是不是你需要的,也许在哪一块你偏偏就需要一个最小的数呢?所以就有了注意了机制. 用X来表示N组输入信息,D是X的维度,Xn表示一组输入信息.为了节省计算资源不需要把所有信息都输入神经网络,只需要从X中选择一些和任务相关的信息.注意力机制的计算可以分为两步:一是在所有输入信息…
一.编码-解码架构 目的:解决语音识别.机器翻译.知识问答等输出输入序列长度不相等的任务. C是输入的一个表达(representation),包含了输入序列的有效信息. 它可能是一个向量,也可能是一个固定长度的向量序列: 如果C是一个向量序列,则它和输入序列的区别在于:序列C是定长的.较短的:而输入序列是不定长的.较长的. 二.注意力机制 1.attention 注意力权重用来估计其他元素与其相关的强度,并将由注意力加权的值的总和作为计算最终目标的特征. step1:计算其他元素与待测元素的相…
注意力机制 在"编码器-解码器(seq2seq)"⼀节⾥,解码器在各个时间步依赖相同的背景变量(context vector)来获取输⼊序列信息.当编码器为循环神经⽹络时,背景变量来⾃它最终时间步的隐藏状态.将源序列输入信息以循环单位状态编码,然后将其传递给解码器以生成目标序列.然而这种结构存在着问题,尤其是RNN机制实际中存在长程梯度消失的问题,对于较长的句子,我们很难寄希望于将输入的序列转化为定长的向量而保存所有的有效信息,所以随着所需翻译句子的长度的增加,这种结构的效果会显著下降…
欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/ ,学习更多的机器学习.深度学习的知识! 在这篇文章中,我们将解决自然语言处理(具体是指问答)中最具挑战性但最有趣的问题之一.我们将在Tensorflow中实现Google的QANet.就像它的机器翻译对应的Transformer网络一样,QANet根本不使用RNN,这使得训练/测试更快. 我假设你已经掌握了Python和Tensorflow的一些知识. Question Answering是计算机科学…
注意力机制 在"编码器-解码器(seq2seq)"⼀节⾥,解码器在各个时间步依赖相同的背景变量(context vector)来获取输⼊序列信息.当编码器为循环神经⽹络时,背景变量来⾃它最终时间步的隐藏状态.将源序列输入信息以循环单位状态编码,然后将其传递给解码器以生成目标序列.然而这种结构存在着问题,尤其是RNN机制实际中存在长程梯度消失的问题,对于较长的句子,我们很难寄希望于将输入的序列转化为定长的向量而保存所有的有效信息,所以随着所需翻译句子的长度的增加,这种结构的效果会显著下降…
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/35 本文地址:http://www.showmeai.tech/article-detail/227 声明:版权所有,转载请联系平台与作者并注明出处 收藏ShowMeAI查看更多精彩内容 本系列为吴恩达老师<深度学习专业课程>学习与总结整理所得,对应的课程视频可以在这里查看. 引言 在ShowMeAI前一篇文章 自然语言处理与词嵌入 中我们对以下内容进行了介绍: 词嵌入与迁移学习/…
来源商业新知网,原标题:深入理解BERT Transformer ,不仅仅是注意力机制 BERT是google最近提出的一个自然语言处理模型,它在许多任务 检测上表现非常好. 如:问答.自然语言推断和释义而且它是开源的.因此在社区中非常流行. 下图展示了不同模型的GLUE基准测试分数(不同NLP评估任务的平均得分)变化过程. 尽管目前还不清楚是否所有的GLUE任务都非常有意义,但是基于Trandformer编码器的通用模型(Open-GPT.BERT.BigBird),在一年内缩小了任务专用模型…
本篇随笔为转载,原文地址:知乎,深度学习中Attention Mechanism详细介绍:原理.分类及应用.参考链接:深度学习中的注意力机制. Attention是一种用于提升基于RNN(LSTM或GRU)的Encoder + Decoder模型的效果的的机制(Mechanism),一般称为Attention Mechanism.Attention Mechanism目前非常流行,广泛应用于机器翻译.语音识别.图像标注(Image Caption)等很多领域,之所以它这么受欢迎,是因为Atten…
什么是Attention机制 Attention机制通俗的讲就是把注意力集中放在重要的点上,而忽略其他不重要的因素.其中重要程度的判断取决于应用场景,拿个现实生活中的例子,比如1000个人眼中有1000个哈姆雷特.根据应用场景的不同,Attention分为空间注意力和时间注意力,前者用于图像处理,后者用于自然语言处理.本文主要介绍Attention机制在Seq2seq中的应用. 为什么要用Attention机制 我们知道在Seq2seq模型中,原始编解码模型的encode过程会生成一个中间向量C…
在碎片化阅读充斥眼球的时代,越来越少的人会去关注每篇论文背后的探索和思考. 在这个栏目里,你会快速 get 每篇精选论文的亮点和痛点,时刻紧跟 AI 前沿成果. 点击本文底部的「阅读原文」即刻加入社区,查看更多最新论文推荐. 这是 PaperDaily 的第 71 篇文章 本期推荐的论文笔记来自 PaperWeekly 社区用户 @jamiechoi.本文主要讨论自适应的注意力机制在 Image Caption 中的应用.作者提出了带有视觉标记的自适应 Attention 模型,在每一个 tim…
参考: https://zhuanlan.zhihu.com/p/51623339 https://arxiv.org/abs/1706.06978 注意力机制顾名思义,就是模型在预测的时候,对用户不同行为的注意力是不一样的,“相关”的行为历史看重一些,“不相关”的历史甚至可以忽略.那么这样的思想反应到模型中也是直观的. 如果按照之前的做法,我们会一碗水端平的考虑所有行为记录的影响,对应到模型中就是我们会用一个average pooling层把用户交互过的所有商品的embedding vecto…
深度学习做NLP的方法,基本上都是先将句子分词,然后每个词转化为对应的词向量序列.(https://kexue.fm/archives/4765) 第一个思路是RNN层,递归进行,但是RNN无法很好地学习到全局的结构信息,因为它本质是一个马尔科夫决策过程. 第二个思路是CNN层,其实CNN的方案也是很自然的,窗口式遍历,比如尺寸为3的卷积,就是 在FaceBook的论文中,纯粹使用卷积也完成了Seq2Seq的学习,是卷积的一个精致且极致的使用案例,CNN方便并行,而且容易捕捉到一些全局的结构信息…
使用Multi-head Self-Attention进行自动特征学习的CTR模型 https://blog.csdn.net/u012151283/article/details/85310370 nlp中的Attention注意力机制+Transformer详解 https://zhuanlan.zhihu.com/p/53682800…
第三周 序列模型和注意力机制(Sequence models & Attention mechanism) 3.1 序列结构的各种序列(Various sequence to sequence architectures) 首先,我们先建立一个网络,这个网络叫做编码网络(encoder network)(上图编号 1 所示),它是一个 RNN 的结构, RNN 的单元可以是 GRU 也可以是 LSTM.每次只向该网络中输入一个法语单词,将输入序列接收完毕后,这个 RNN 网络会输出一个向量来代表…
(零)注意力模型(Attention Model) 1)本质:[选择重要的部分],注意力权重的大小体现选择概率值,以非均匀的方式重点关注感兴趣的部分. 2)注意力机制已成为人工智能的一个重要概念,其在计算机视觉.自然语言处理等众多领域得到了广泛的研究和应用. 3)注意力机制模仿了生物观察行为的内部过程.例如,视觉处理系统倾向于有选择地关注图像某些部分,而忽略其他无关的信息,以一种有助于感知的方式(our visual processing system tends to focus select…
参考 1. 基础模型(Basic Model) Sequence to sequence模型(Seq2Seq) 从机器翻译到语音识别方面都有着广泛的应用. 举例: 该机器翻译问题,可以使用"编码网络(encoder network)"+"解码网络(decoder network)"两个RNN模型组合的形式来解决. encoder network将输入语句编码为一个特征向量,传递给decoder network,完成翻译.具体模型结构如下图所示: 其中,encoder…
TensorFlow LSTM Attention 机制图解 深度学习的最新趋势是注意力机制.在接受采访时,现任OpenAI研究主管的Ilya Sutskever提到,注意力机制是最令人兴奋的进步之一,他们在这里进行投入.听起来令人兴奋但是什么是注意机制? 基于人类视觉注意机制,神经网络中的注意机制非常松散.人的视觉注意力得到了很好的研究,虽然存在着不同的模式,但它们基本上都是以"低分辨率"感知周围的图像,以"高分辨率"的方式集中在图像的某个区域,然后随着时间的推移…
一.基础模型 假设要翻译下面这句话: "简将要在9月访问中国" 正确的翻译结果应该是: "Jane is visiting China in September" 在这个例子中输入数据是10个中文汉字,输出为6个英文单词,\(T_x\)和\(T_y\)数量不一致,这就需要用到序列到序列的RNN模型. ​ 类似的例子还有看图说话: 只需要将encoder部分用一个CNN模型替换就可以了,比如AlexNet,就可以得到"一只(可爱的)猫躺在楼梯上"…
基本概念 机器翻译和语音识别是最早开展的两项人工智能研究.今天也取得了最显著的商业成果. 早先的机器翻译实际脱胎于电子词典,能力更擅长于词或者短语的翻译.那时候的翻译通常会将一句话打断为一系列的片段,随后通过复杂的程序逻辑对每一个片段进行翻译,最终组合在一起.所得到的翻译结果应当说似是而非,最大的问题是可读性和连贯性非常差. 实际从机器学习的观点来讲,这种翻译方式,也不符合人类在做语言翻译时所做的动作.其实以神经网络为代表的机器学习,更多的都是在"模仿"人类的行为习惯. 一名职业翻译通…
1 基础模型(Basic models) 一个机器翻译的例子,比如把法语翻译成英语,如何构建一个神经网络来解决这个问题呢? 首先用RNN构建一个encoder,对法语进行编码,得到一系列特征 然后用RNN构建一个decoder,将编码后的特征信息,解码成英语,以此来生成对应的英语翻译 一个图像生成字幕的例子 首先用CNN构建一个encoder,对图像进行编码,得到一系列特征 然后用RNN构建一个decoder,将编码后的特征信息,解码成文本,以此来生成对图像的字幕描述 2 选择最可能的句子(Pi…
前面阐述注意力理论知识,后面简单描述PyTorch利用注意力实现机器翻译 Effective Approaches to Attention-based Neural Machine Translation 简介 Attention介绍 在翻译的时候,选择性的选择一些重要信息.详情看这篇文章 . 本着简单和有效的原则,本论文提出了两种注意力机制. Global 每次翻译时,都选择关注所有的单词.和Bahdanau的方式 有点相似,但是更简单些.简单原理介绍. Local 每次翻译时,只选择关注一…