布隆过滤器redis缓存】的更多相关文章

Bloom Filter布隆过滤器算法背景如果想判断一个元素是不是在一个集合里,一般想到的是将集合中所有元素保存起来,然后通过比较确定.链表.树.散列表(又叫哈希表,Hash table)等等数据结构都是这种思路,存储位置要么是磁盘,要么是内存.很多时候要么是以时间换空间,要么是以空间换时间.在响应时间要求比较严格的情况下,如果我们存在内里,那么随着集合中元素的增加,我们需要的存储空间越来越大,以及检索的时间越来越长,导致内存开销太大.时间效率变低.此时需要考虑解决的问题就是,在数据量比较大的情…
Bloom Filter是一个占用空间很小.效率很高的随机数据结构,它由一个bit数组和一组Hash算法构成.可用于判断一个元素是否在一个集合中,查询效率很高(1-N,最优能逼近于1). 在很多场景下,我们都需要一个能迅速判断一个元素是否在一个集合中.譬如: 网页爬虫对URL的去重,避免爬取相同的URL地址: 反垃圾邮件,从数十亿个垃圾邮件列表中判断某邮箱是否垃圾邮箱(同理,垃圾短信): 缓存击穿,将已存在的缓存放到布隆中,当黑客访问不存在的缓存时迅速返回避免缓存及DB挂掉. 可能有人会问,我们…
redis缓存穿透穿透解决方案-布隆过滤器 我们先来看一段代码 cache_key = "id:1" cache_value = GetValueFromRedis(cache_key); //判断缓存是否有数据 if cache_value != nil{ //如果有 直接返回数据 return cache_value } db_value = GetValueFromDb(cache_key) // 从数据库中查询数据 if db_value == nil{ return db_v…
欢迎关注微信公众号:万猫学社,每周一分享Java技术干货. 什么是布隆过滤器 布隆过滤器(Bloom Filter)是由Howard Bloom在1970年提出的一种比较巧妙的概率型数据结构,它可以告诉你某种东西一定不存在或者可能存在.当布隆过滤器说,某种东西存在时,这种东西可能不存在:当布隆过滤器说,某种东西不存在时,那么这种东西一定不存在. 布隆过滤器相对于Set.Map 等数据结构来说,它可以更高效地插入和查询,并且占用空间更少,它也有缺点,就是判断某种东西是否存在时,可能会被误判.但是只…
什么是布隆过滤器 布隆过滤器(Bloom Filter)是由Howard Bloom在1970年提出的一种比较巧妙的概率型数据结构,它可以告诉你某种东西一定不存在或者可能存在.当布隆过滤器说,某种东西存在时,这种东西可能不存在:当布隆过滤器说,某种东西不存在时,那么这种东西一定不存在. 布隆过滤器相对于Set.Map 等数据结构来说,它可以更高效地插入和查询,并且占用空间更少,它也有缺点,就是判断某种东西是否存在时,可能会被误判.但是只要参数设置的合理,它的精确度也可以控制的相对精确,只会有小小…
一.布隆过滤器 布隆过滤器:一种数据结构.由二进制数组(很长的二进制向量)组成的.布隆过滤器可以用于检索一个元素是否在一个集合中.它的优点是空间效率和查询时间都比一般的算法要好的多,缺点是有一定的误识别率和删除困难. 布隆过滤器设计理念:如果想要判断一个元素是不是在一个集合里,一般想到的是将所有元素保存起来,然后通过比较确定.链表,树等等数据结构都是这种思路.但是随着集合中元素的增加,我们需要的存储空间越来越大,检索速度也越来越慢.这时布隆过滤器就产生了.它可以通过N个Hash函数将一个元素映射…
1.缓存的受益和成本 1.1 受益 1.可以加速读写:Redis是基于内存的数据源,通过缓存加速数据读取速度 2.降低后端负载:后端服务器通过前端缓存降低负载,业务端使用Redis降低后端数据源的负载等 1.2 成本 1.数据不一致:后端数据源中的数据缓存到Redis,如果后端数据库中的数据被更新时,根据更新策略不同,Redis缓存层中的数据和数据源的数据有时间窗口不一致 2.代码维护成本:多了一层缓存逻辑,以前只需要读取后端数据库,现在还需要维护缓存的读写以及Redis与数据库的连接等 3.运…
应用场景 主要是解决大规模数据下不需要精确过滤的场景,如检查垃圾邮件地址,爬虫URL地址去重,解决缓存穿透问题等. 布隆过滤器(Bloom Filter)是1970年由布隆提出的.它实际上是一个很长的二进制向量和一系列随机映射函数.布隆过滤器可以用于检索一个元素是否在一个集合中.它的优点是空间效率和查询时间都远远超过一般的算法,缺点是有一定的误识别率和删除困难.hash原理Hash (哈希,或者散列)函数在计算机领域,尤其是数据快速查找领域,加密领域用的极广.其作用是将一个大的数据集映射到一个小…
缓存穿透 用户想要查询一个数据 在redis缓存数据库中没有获取到 就会向后端的数据库中查询. 当用户很多 都去访问后端数据库的话,这就会给数据库带来很大的压力. 常见场景:秒杀活动 等 解决方法: 1.布隆过滤器 2.缓存空对象 缓存击穿 缓存击穿 就是一个Key非常热.这个key在失效的瞬间 持续的大并发就会击穿缓存 直接请求数据库. 常见场景:微博热搜 等 解决办法: 1.设置热点数据永不过期 2.分布式锁 缓存雪崩 在某一个时间段 缓存集中过期失效,如过期时间到了 或者Redis服务器宕…
一种节省空间的概率数据结构 布隆过滤器可以理解为一个不怎么精确的 set 结构,当你使用它的 contains 方法判断某个对象是否存在时,它可能会误判.但是布隆过滤器也不是特别不精确,只要参数设置的合理,它的精确度可以控制的相对足够精确,只会有小小的误判概率. 当布隆过滤器说某个值存在时,这个值可能不存在:当它说不存在时,那就肯定不存在.打个比方,当它说不认识你时,肯定就不认识:当它说见过你时,可能根本就没见过面,不过因为你的脸跟它认识的人中某脸比较相似 (某些熟脸的系数组合),所以误判以前见…