最短路径问题(floyd)】的更多相关文章

问题简介: 给定T条路,S个起点,D个终点,求最短的起点到终点的距离. 思路简介: 弗洛伊德算法即先以a作为中转点,再以a.b作为中转点,直到所有的点都做过中转点,求得所有点到其他点的最短路径,Floyd算法适用于多源最短路径,是一种动态规划算法,稠密图效果最佳,边权可正可负.优点:容易理解,可以算出任意两个节点之间的最短距离,代码编写简单.缺点:时间复杂度比较高,不适合计算大量数据.Floyd算法时间复杂度为n^3,Dijikstra算法为n^2. 优化代码: #include <iostre…
数据结构与算法--最短路径之Floyd算法 我们知道Dijkstra算法只能解决单源最短路径问题,且要求边上的权重都是非负的.有没有办法解决任意起点到任意顶点的最短路径问题呢?如果用Dijkstra算法,可以这样做: Dijkstra[] all = new Dijkstra[graph.vertexNum()]; for (int i = 0; i < all.length; i++) { all[i] = new Dijkstra(graph, i); } for (int s = 0; s…
Dijkstra算法: Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止.Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等.注意该算法要求图中不存在负权边. 问题描述:在无向图 G=(V,E) 中,假设每条边 E[i] 的长度为 w[i],找到由顶点 V0 到其余各点的最短路径.(单源最短路径) 算法的基本思想是:每…
Floyd算法又称弗洛伊德算法,也叫做Floyd's algorithm,Roy–Warshall algorithm,Roy–Floyd algorithm, WFI algorithm. Floyd算法是一种在有权图中(有确定的非负的权值,不能存在环路)查找最短路径的算法.该算法的一次简单执行可以找出任意结点之间的最短路径(尽管它没有返回路径的具体信息). 思想: Floyd算法通过比较图中任意两点间所有可能存在的路径长度得到最短路径长度. 我们定义一个函数shortestPath(i,j,…
floyd算法和之前讲的bellman算法.dijkstra算法最大的不同在于它所处理的终于不再是单源问题了,floyd可以解决任何点到点之间的最短路径问题,个人觉得floyd是最简单最好用的一种算法,只不过它的时间复杂度高,为o(v^3),用的时候需要谨慎. floyd的精髓部分在于实现其思想的三个for循环,而它的主要思想:如果存在一个点k,使得dis[s][t]<dis[s][k]+dis[k][t],那么我们就更新dis[s][t]. #include<iostream>//fl…
1.Dijkstra算法基础: 算法过程比prim算法稍微多一点步骤,但思想确实巧妙也是贪心,目的是求某个源点到目的点的最短距离,总的来说dijkstra也就是求某个源点到目的点的最短路,求解的过程也就是求源点到整个图的最短,次短距,第三短距离等(这些距离都是源点到某个点的最短距离)...求出的每个距离都对应一个点,也就是要到的到这个点,求的也就是原点到所有点的最短距离,并存在二维数组中,给出目的点就能直接通过查表获得最短距离. 第1步:以源点START(假设s1)为始点,求最短距离,如何求?…
一.Floyd算法 假设从i到j的最短路径上要经过若干个顶点,这些中间顶点中最大的顶点编号为k,最小的顶点为t,因此要求算dist[i][j]的最小值,那么只需要求算dist[i][s]+dist[s][j](t<=s<=k)的所有值,并取其中最小者即可.因此可以设置一个中间顶点k(0<=k<n)分别插入到每队顶点(i,j)之中,并更新dist[i][j]的值.当n个顶点插入到每队顶点之中,求解便结束了.其实Floyd算法实质上是一个动态规划算法. /*每对顶点之间最短路径Floy…
Floyd算法 思想:将n个顶点的图G“分成”很多子图 每对顶点vi和vj对应子图Gij(i=0,1,…,n-1和j=0,1,…,n-1) 每对顶点vi和vj都保留一条顶点限于子图Gij中的最短路径Pij(称为待定路径),其长度为Dij,不断地往子图Gij中增加“中间过渡点”(子图不断扩大),不断地将Pij优化(始终保持在Gij中是最短的),当图中所有n个顶点都作为中间过渡点加到子图Gij中时,子图Gij就变成了原图G,待定路径Pij也就变成最终所求的(在原图中的)vi到vj的最短路径.(注:i…
为了能讲明白弗洛伊德(Floyd)算法的主要思想,我们先来看最简单的案例.图7-7-12的左图是一个简单的3个顶点的连通网图. 我们先定义两个二维数组D[3][3]和P[3][3], D代表顶点与顶点的最短路径权值和的矩阵.P代表对应顶点的最短路径的前驱矩阵.在未分析任何顶点之前,我们将D命名为D(-1),其实它就是初始图的邻接矩阵.将P命名为P(-1), 初始化为图中的矩阵. 首先我们来分析,所有的顶点经过v0后到达另一顶点的最短路径.因为只有3个顶点,因此需要查看v1->v0->v2,得到…
概念 最短路径也是图的一个应用,即寻找图中某两个顶点的最短路径长度. 实际应用:例如确定某两个城市间的坐火车最短行车路线长度等. Floyd algorithm 中文名就是弗洛伊德算法. 算法思路:用邻接矩阵来存储图的结构,edge[i][j]表示从结点i到结点j的最短路径长度,那么该如何计算edge[i][j]呢?首先我们可以假设当前的edge[i][j]不是最短的路径长度,必须经过k结点,比较edge[i][i]与edge[i][k]+edge[k][j]的大小(其中k的取值为所有点的编号)…