pytorch实现LeNet5分类CIFAR10】的更多相关文章

关于LeNet-5 LeNet5的Pytorch实现在网络上已经有很多了,这里记录一下自己的实现方法. LeNet-5出自于Gradient-Based Learning Applied to Document Recognition中,被用于手写数字识别,也是首批在图像识别中运用了卷积的网络.LeNet-5的网络结果如下: 从这个网络结构图中可以看出,网络首先经过了卷积.池化.卷积.池化.全连接.全连接.接下来对这些层做一些解释. 网络结构 第一次卷积 LeNet-5的第一次卷积采用了5*5的…
KNN分类CIFAR-10,并且做Cross Validation,CIDAR-10数据库数据如下: knn.py : 主要的试验流程 from cs231n.data_utils import load_CIFAR10 from cs231n.classifiers import KNearestNeighbor import random import numpy as np import matplotlib.pyplot as plt # set plt params plt.rcPar…
半年前用numpy写了个鸢尾花分类200行..每一步计算都是手写的  python构建bp神经网络_鸢尾花分类 现在用pytorch简单写一遍,pytorch语法解释请看上一篇pytorch搭建简单网络 import pandas as pd import torch.nn as nn import torch class MyNet(nn.Module): def __init__(self): super(MyNet, self).__init__() self.fc = nn.Sequen…
本次分类问题使用的数据集是MNIST,每个图像的大小为\(28*28\). 编写代码的步骤如下 载入数据集,分别为训练集和测试集 让数据集可以迭代 定义模型,定义损失函数,训练模型 代码 import torch import torch.nn as nn import torchvision.transforms as transforms import torchvision.datasets as dsets from torch.autograd import Variable '''下…
论文  < Convolutional Neural Networks for Sentence Classification>通过CNN实现了文本分类. 论文地址: 666666 模型图: 模型解释可以看论文,给出code and comment: # -*- coding: utf-8 -*- # @time : 2019/11/9 13:55 import numpy as np import torch import torch.nn as nn import torch.optim…
文本情感分类: 文本情感分类采用LSTM的最后一层输出 比如双层的LSTM,使用正向的最后一层和反向的最后一层进行拼接 def forward(self,input): ''' :param input: :return: ''' input_embeded = self.embedding(input) #[batch_size,seq_len,200] output,(h_n,c_n) = self.lstm(input_embeded) out = torch.cat(h_n[-1,:,:…
import torch from torch.autograd import Variable import torch.nn.functional as F import matplotlib.pyplot as plt n_data = torch.ones(100, 2) # 100个具有2个属性的数据 shape=(100,2) x0 = torch.normal(2*n_data, 1) # 根据原始数据生成随机数据,第一个参数是均值,第二个是方差,这里设置为1了,shape=(10…
先运行main.py进行文本序列化,再train.py模型训练 dataset.py from torch.utils.data import DataLoader,Dataset import torch import os from utils import tokenlize import config class ImdbDataset(Dataset): def __init__(self,train=True): super(ImdbDataset,self).__init__()…
在上一篇博客CNN核心概念理解中,我们以LeNet为例介绍了CNN的重要概念.在这篇博客中,我们将利用著名深度学习框架PyTorch实现LeNet5,并且利用它实现手写体字母的识别.训练数据采用经典的MNIST数据集.本文主要分为两个部分,一是如何使用PyTorch实现LeNet模型,二是实现数据准备.定义网络.定义损失函数.训练.测试等完整流程. 一.LeNet模型定义 LeNet是识别手写字母的经典网络,虽然年代久远,但从学习的角度仍不失为一个优秀的范例.要实现这个网络,首先来看看这个网络的…
前面基本上把 TensorFlow 的在图像处理上的基础知识介绍完了,下面我们就用 TensorFlow 来搭建一个分类 cifar10 的神经网络. 首先准备数据: cifar10 的数据集共有 6 万幅 32 * 32 大小的图片,分为 10 类,每类 6000 张,其中 5 万张用于训练, 1 万张用于测试.数据集被分成了5 个训练的 batches 和 1 个测试的 batch.每个 batch 里的图片都是随机排列的.官网上提供了三个版本的下载链接,分别是 Python 版本的,Mat…