NN tutorials:】的更多相关文章

确实“人话”解释清楚了 ^_^ 池化不只有减少参数的作用,还可以: 不变性,更关注是否存在某些特征而不是特征具体的位置.可以看作加了一个很强的先验,让学到的特征要能容忍一些的变化.防止过拟合,提高模型泛化能力获得定长输出.(文本分类的时候输入是不定长的,可以通过池化获得定长输出)提高感受野大小参考知乎回答:https://www.zhihu.com/question/36686900 Pycon 2016 tensorflow 研讨会总结 — tensorflow 手把手入门, 用”人话”解释C…
Learn From: Pytroch 官方Tutorials Pytorch 官方文档 环境:python3.6 CUDA10 pytorch1.3 vscode+jupyter扩展 #%% #%% # 1.Loading and normalizing CIFAR10 import torch import torchvision import torchvision.transforms as transforms batch_size = 16 transform = transform…
一:适用范围: tf.nn.dropout是TensorFlow里面为了防止或减轻过拟合而使用的函数,它一般用在全连接层 二:原理: dropout就是在不同的训练过程中随机扔掉一部分神经元.也就是让某个神经元的激活值以一定的概率p,让其停止工作,这次训练过程中不更新权值,也不参加神经网络的计算.但是它的权重得保留下来(只是暂时不更新而已),因为下次样本输入时它可能又得工作了 三:函数介绍: tf.nn.drop(x,  keep_prob, noise_shape=None, seed=Non…
tf.nn.dropout:函数官网说明: tf.nn.dropout( x, keep_prob, noise_shape=None, seed=None, name=None ) Defined in tensorflow/python/ops/nn_ops.py. See the guides: Layers (contrib) > Higher level ops for building neural network layers, Neural Network > Activati…
一.tf.nn.dynamic_rnn :函数使用和输出 官网:https://www.tensorflow.org/api_docs/python/tf/nn/dynamic_rnn 使用说明: Args: cell: An instance of RNNCell. //自己定义的cell 内容:BasicLSTMCell,BasicRNNCell,GRUCell 等,,, inputs: If time_major == False (default), this must be a Ten…
目录 三.TensorFlow入门 1. TensorFlow计算模型--计算图 I. 计算图的概念 II. 计算图的使用 2.TensorFlow数据类型--张量 I. 张量的概念 II. 张量的使用 3.会话 4.TensorFlow实现神经网络 I. 前向传播算法 II. 神经网络参数与TensorFlow变量 III. 用TF训练神经网络 四.深层神经网络 1. 深度学习与深度神经网络 I. 线性模型的局限性 II. Activation去线性化 III. 多层网络解决异或运算 2. L…
torch.nn 的本质 PyTorch 提供了各种优雅设计的 modules 和类 torch.nn,torch.optim,Dataset 和 DataLoader 来帮助你创建并训练神经网络.为了充分利用它们的力量并且根据你的问题定制它们,你需要真正地准确了解它们在做什么.为了建立这种理解,我们首先从这些模型(models)上不使用任何特性(features)在 MNIST 数据集上训练一个基本的神经网络:我们将从最基本的 PyTorch Tensor 功能开始.然后,我们每次在 torc…
该教程是在notebook上运行的,而不是脚本,下载notebook文件. PyTorch提供了设计优雅的模块和类:torch.nn, torch.optim, Dataset, DataLoader,以创建和训练神经完了过.为了充分利用其功能,并根据问题进行自定义,需要充分理解它们做的是什么.为了提高认知,我们首先在MNIST上训练一个基础的神经网络,而不使用这些模块的任何特性:仅使用最基础的PyTorch tensor函数初始化.然后,一次添加一个来自torch.nn, torch.opti…
困扰写代码的机器难免会被我们安装上各种各样的开发工具.语言运行环境和引用库等一大堆的东西,长久以来不仅机器乱七八糟,而且有些相同的软件还有可能会安装不同的版本,这样又会导致一个项目正常运行了,却不小心破坏了另一个项目的运行环境.虽然可以安装虚拟机,但是虚拟机不仅又大又笨重,时间久了上面的问题难免还是会遇到,有谁会在自己机器里安装上十几二十几个的虚拟机呢,就算真安装这么多,时间久了又怎么记得住哪个是哪个呢?在机器上运行着三五个项目的情况下,问一下,您敢随随便便换一台开发机么?除了这个问题,还有另一…
前面的两篇文章中.我们对NHibernate已经做了大致了解 <ORM利器:NHibernate(一)简单介绍>Nhibernate的作用:攻克了对象和数据库的转化问题 <ORM利器:NHibernate(二)使用CodeSmith高速生成映射文件和映射类>利用CodeSmith由表导出映射类(就是通常所说的Entity)和映射文件(告诉你表和对象之间是怎样建立一一相应的关系的). 接下来将会对NHibernate的使用做Demo解析,分为五部曲: 创建表.若要把对象转换为数据库中…