首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
基于LinkedhashMap实现的LRU算法
】的更多相关文章
基于LinkedhashMap实现的LRU算法
LRU全称是Least Recently Used,即最近最久未使用的意思.LRU算法的设计原则是:如果一个数据在最近一段时间没有被访问到,那么在将来它被访问的可能性也很小.也就是说,当限定的空间已存满数据时,应当把最久没有被访问到的数据淘汰.解决的实际问题:当做数据缓存时,缓存的数据会随着时间的推移越来越多,如果没有缓存清除策略,那么会出现俩个问题:1.缓存越来越大挤爆内存.2.很多不使用的数据占据这内存空间,导致内存得不到有效利用.此场景使用LRU算法非常合适.LRU算法的主要思想: 1.设…
JDK自带的LinkedHashMap来实现LRU算法
1 代码如下 public class LRULinkedHashMap<K, V> extends LinkedHashMap<K, V> { private final int maxCapacity; private static final float DEFAULT_LOAD_FACTOR = 0.75f; private final Lock lock = new ReentrantLock(); public LRULinkedHashMap(int maxCapac…
Redis的LRU算法
Redis的LRU算法 LRU算法背后的的思想在计算机科学中无处不在,它与程序的"局部性原理"很相似.在生产环境中,虽然有Redis内存使用告警,但是了解一下Redis的缓存使用策略还是很有好处的.下面是生产环境下Redis使用策略:最大可用内存限制为4GB,采用 allkeys-lru 删除策略.所谓删除策略:当redis使用已经达到了最大内存,比如4GB时,如果这时候再往redis里面添加新的Key,那么Redis将选择一个Key删除.那如何选择合适的Key删除呢? CONFIG…
LRU算法实现
JDK中的实现 在JDK中LinkedHashMap可以作为LRU算法以及插入顺序的实现,LinkedHashMap继承自HashMap,底层结合hash表和双向链表,元素的插入和查询等操作通过计算hash值找到其数组位置,在做插入或则查询操作是,将元素插入到链表的表头(当然得先删除链表中的老元素),如果容量满了,则删除LRU这个元素,在链表表尾的元素即是. LinkedHashMap的时间复杂度和HashMap差不多,双向链表的删除和表头插入等操作都是O(1)复杂度,故不会影响HashMap的…
GuavaCache学习笔记一:自定义LRU算法的缓存实现
前言 今天在看GuavaCache缓存相关的源码,这里想到先自己手动实现一个LRU算法.于是乎便想到LinkedHashMap和LinkedList+HashMap, 这里仅仅是作为简单的复习一下. LRU LRU(Least recently used,最近最少使用)算法根据数据的历史访问记录来进行淘汰数据,其核心思想是"如果数据最近被访问过,那么将来被访问的几率也更高". 代码实现原理 LinkedList + HashMap: LinkedList其实是一个双向链表,我们可以通过…
LRU算法---缓存淘汰算法
计算机中的缓存大小是有限的,如果对所有数据都缓存,肯定是不现实的,所以需要有一种淘汰机制,用于将一些暂时没有用的数据给淘汰掉,以换入新鲜的数据进来,这样可以提高缓存的命中率,减少磁盘访问的次数. LRU(Least Recently Used 最近最少使用)算法有两种策略(均以队列的方式实现),一种是不调整的,另外一种是随时进行调整的,即缓存命中后,将这个数据缓存项移到LRU队列的最前端. 例如,缓存容量为4,顺序访问数据项1 5 1 3 5 2 4 1 2 第一种策略:首先读取…
Guava---缓存之LRU算法
随笔 - 169 文章 - 0 评论 - 292 GuavaCache学习笔记一:自定义LRU算法的缓存实现 前言 今天在看GuavaCache缓存相关的源码,这里想到先自己手动实现一个LRU算法.于是乎便想到LinkedHashMap和LinkedList+HashMap, 这里仅仅是作为简单的复习一下. LRU LRU(Least recently used,最近最少使用)算法根据数据的历史访问记录来进行淘汰数据,其核心思想是“如果数据最近被访问过,那么将来被访问的几率也更高”. 代…
缓存---LRU算法实现
2.LRU 以下是基于双向链表+HashMap的LRU算法实现,对算法的解释如下: 设置一个map存放对应的键和值,同时设置一个双向链表,来保存最近最久未使用的关系,如果访问一个键,键存在于map中,访问完成后,我们在链表中将该键删除,然后将其添加到链表的首部,表示最近刚访问过这个键,当缓存满了后,如果要添加一个键值对,我们要删除的就是位于链表尾部的键和其对应的值,因为它是最久未访问的值. class LRUCache { HashMap<Integer,Integer>cache=n…
借助LinkedHashMap实现基于LRU算法缓存
一.LRU算法介绍 LRU(Least Recently Used)最近最少使用算法,是用在操作系统中的页面置换算法,因为内存空间是有限的,不可能把所有东西都放进来,所以就必须要有所取舍,我们应该把什么东西放进来呢?有没有什么判定标准呢?页面置换算法就是干这个的,企图通过之前的行为预测到之后的行为(这是概率问题),而LRU就是其中的一种,它的基本思想就是既然有一块数据,最近的一段时间内它是最少访问的,这说明在这之后它也可能是最少访问的,如果非要移除一个的话,我只好把它置换出内存了. 总结一下:…
LinkedHashMap 和 LRU算法实现
个人觉得LinkedHashMap 存在的意义就是为了实现 LRU 算法. public class LinkedHashMap<K,V> extends HashMap<K,V> implements Map<K,V> { public LinkedHashMap(int initialCapacity, float loadFactor, boolean accessOrder) { super(initialCapacity, loadFactor); this.…