词向量---ELMO】的更多相关文章

1.ELMo(Embeddings from Language Models ) RNN-based language models(trained from lots of sentences) ELMo 词向量是由双向神经网络语言模型的内部多层向量的线性加权组成. LSTM 高层状态向量捕获了上下文相关的语义信息,可以用于语义消岐等任务. 结果表明:越高层的状态向量,越能够捕获语义信息. LSTM 底层状态向量捕获了语法信息,可以用于词性标注等任务.结果表明:越低层的状态向量,越能够捕获语法…
最近在家听贪心学院的NLP直播课.都是比较基础的内容.放到博客上作为NLP 课程的简单的梳理. 本节课程主要讲解的是词向量和Elmo.核心是Elmo,词向量是基础知识点. Elmo 是2018年提出的论文 <Deep contextualized word representtations>,在这篇论文中提出了很重要的思想Elmo,Elmo 是一种基于特征的语言模型,用预训练的语言模型,生成更好的特征. Elmo是一种新型深度语境化词表征,可对词进行复杂特征(如句法和语义)和词在语言语境中的变…
翻车2次,试水2次,今天在B站终于成功直播了. 人气11万. 主要讲了语言模型.词向量的训练.ELMo模型(深度.双向的LSTM模型) 预训练与词向量 词向量的常见训练方法 深度学习与层次表示 LSTM, BI-LSTM模型回顾 基于BI-LSTM的ELMo算法 总结…
自然语言处理的第一步就是获取词向量,获取词向量的方法总体可以分为两种两种,一个是基于统计方法的,一种是基于语言模型的. 1 Glove - 基于统计方法 Glove是一个典型的基于统计的获取词向量的方法,基本思想是:用一个词语周边其他词语出现的次数(或者说两个词共同出现的次数)来表示每一个词语,此时每个词向量的维度等于词库容量,每一维存储着词库对应序号的词语出现在当前词语周围的次数,所有这些词向量组成的矩阵就是共现矩阵. 我们也可以换一个角度来理解共现矩阵,共现矩阵就是两个词同时出现的次数,共现…
常用的词向量方法word2vec. 一.Word2vec 1.参考资料: 1.1) 总览 https://zhuanlan.zhihu.com/p/26306795 1.2) 基础篇:  深度学习word2vec笔记之基础篇  https://blog.csdn.net/mytestmy/article/details/26961315 1.3) 算法篇  https://zhuanlan.zhihu.com/p/26306795  . word2vec Parameter Learning E…
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 textCNN 模型 charCNN 模型 Bi-LSTM 模型 Bi-LSTM + Attention 模型 RCNN 模型 Adversarial LSTM 模型 Transformer 模型 ELMo 预训练模型 BERT 预训练模型 所有代码均在textClassifier仓库中. 2 数据集…
1.对词用独热编码进行表示的缺点 向量的维度会随着句子中词的类型的增大而增大,最后可能会造成维度灾难2.任意两个词之间都是孤立的,仅仅将词符号化,不包含任何语义信息,根本无法表示出在语义层面上词与词之间的相关信息,而这一点是致命的. 2.用向量代表词的好处 3.词嵌入的由来 在上文中提过,one-hot 表示法具有维度过大的缺点,那么现在将 vector 做一些改进: 1.将 vector 每一个元素由整形改为浮点型,变为整个实数范围的表示: 2.将原来稀疏的巨大维度压缩嵌入到一个更小维度的空间…
深度学习掀开了机器学习的新篇章,目前深度学习应用于图像和语音已经产生了突破性的研究进展.深度学习一直被人们推崇为一种类似于人脑结构的人工智能算法,那为什么深度学习在语义分析领域仍然没有实质性的进展呢? 引用三年前一位网友的话来讲: “Steve Renals算了一下icassp录取文章题目中包含deep learning的数量,发现有44篇,而naacl则有0篇.有一种说法是,语言(词.句子.篇章等)属于人类认知过程中产生的高层认知抽象实体,而语音和图像属于较为底层的原始输入信号,所以后两者更适…
使用gensim的word2vec训练了一个词向量. 语料是1G多的维基百科,感觉词向量的质量还不错,共享出来,希望对大家有用. 下载地址是: http://pan.baidu.com/s/1boPm2x5 包含训练代码.使用词向量代码.词向量文件(3个文件) 因为机器内存足够,也没有分批训练.所以代码非常简单.也在共享文件里面,就不贴在这里了.…
0. 词向量是什么 自然语言理解的问题要转化为机器学习的问题,第一步肯定是要找一种方法把这些符号数学化. NLP 中最直观,也是到目前为止最常用的词表示方法是 One-hot Representation,这种方法把每个词表示为一个很长的向量.这个向量的维度是词表大小,其中绝大多数元素为 0,只有一个维度的值为 1,这个维度就代表了当前的词. 举个栗子, “话筒”表示为 [0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 ...] “麦克”表示为 [0 0 0 0 0 0 0 0 …