首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
139、TensorFlow Serving 实现模型的部署(二) TextCnn文本分类模型
】的更多相关文章
139、TensorFlow Serving 实现模型的部署(二) TextCnn文本分类模型
昨晚终于实现了Tensorflow模型的部署 使用TensorFlow Serving 1.使用Docker 获取Tensorflow Serving的镜像,Docker在国内的需要将镜像的Repository地址设置为阿里云的加速地址,这个大家可以自己去CSDN上面找 然后启动docker 2.使用Tensorflow 的 SaveModelBuilder保存Tensorflow的计算图模型,并且设置Signature, Signature主要用来标识模型的输入值的名称和类型 builder…
使用PyTorch建立你的第一个文本分类模型
概述 学习如何使用PyTorch执行文本分类 理解解决文本分类时所涉及的要点 学习使用包填充(Pack Padding)特性 介绍 我总是使用最先进的架构来在一些比赛提交模型结果.得益于PyTorch.Keras和TensorFlow等深度学习框架,实现最先进的体系结构变得非常容易.这些框架提供了一种简单的方法来实现复杂的模型体系结构和算法,而只需要很少的概念知识和代码技能.简而言之,它们是数据科学社区的一座金矿! 在本文中,我们将使用PyTorch,它以其快速的计算能力而闻名.因此,在本文中,…
NLP学习(2)----文本分类模型
实战:https://github.com/jiangxinyang227/NLP-Project 一.简介: 1.传统的文本分类方法:[人工特征工程+浅层分类模型] (1)文本预处理: ①(中文) 文本分词 正向/逆向/双向最大匹配; 基于理解的句法和语义分析消歧: 基于统计的互信息/CRF方法: WordEmbedding + Bi-LSTM+CRF方法 去停用词:维护一个停用词表 (2)特征提取 特征选择的基本思路是根据某个评价指标独立的对原始特征项(词项)进行评分排序,从中选择得分最高的…
tensorflow 模型保存与加载 和TensorFlow serving + grpc + docker项目部署
TensorFlow 模型保存与加载 TensorFlow中总共有两种保存和加载模型的方法.第一种是利用 tf.train.Saver() 来保存,第二种就是利用 SavedModel 来保存模型,接下来以自己项目中的代码为例. 项目中模型的代码: class TensorFlowDKT(object): def __init__(self, config, batch_size): # 导入配置好的参数 self.hiddens = hiddens = config.modelConfig.h…
深度学习之文本分类模型-前馈神经网络(Feed-Forward Neural Networks)
目录 DAN(Deep Average Network) Fasttext fasttext文本分类 fasttext的n-gram模型 Doc2vec DAN(Deep Average Network) MLP(Multi-Layer Perceptrons)叫做多层感知机,即由多层网络简单堆叠而成,进而我们可以在输出层加入softmax,或者将输入层作为特征进行提取后,输入到SVM,逻辑回归,朴素贝叶斯等传统分类器进行分类预测.其中最具代表的是DAN,其基本结构如下图所示: 在输入层,我们对…
Caffe、TensorFlow、MXnet三个开源库对比+主流分类模型对比
库名称 开发语言 支持接口 安装难度(ubuntu) 文档风格 示例 支持模型 上手难易 Caffe c++/cuda c++/python/matlab *** * *** CNN ** MXNet c++/cuda python/R/Julia ** *** ** CNN/RNN * TensorFlow c++/cuda/python c++/python * ** * CNN/RNN/… *** 安装难度: (简单) –> **(复杂) 文档风格: (一般) –> **(好看.全面)…
Python自然语言处理笔记【二】文本分类之监督式分类的细节问题
一.选择正确的特征 1.建立分类器的工作中如何选择相关特征,并且为其编码来表示这些特征是首要问题. 2.特征提取,要避免过拟合或者欠拟合 过拟合,是提供的特征太多,使得算法高度依赖训练数据的特性,而对于一般化的新例子不起作用,在小型训练集上通常会出现这种问题. 欠拟合,是特征太少,算法不能很好地反映实例的特性 3.用错误分析的方法来完善特征集,首先选择开发集,其中包含用于创建模型的语料数据.然后开发集分为训练集和开发测试集. >>> train_names = names[1500:]…
CNN 文本分类模型优化经验——关键点:加卷积层和FC可以提高精度,在FC前加BN可以加快收敛,有时候可以提高精度,FC后加dropout,conv_1d的input维度加大可以提高精度,但是到256会出现OOM。
network = tflearn.input_data(shape=[None, max_len], name='input') network = tflearn.embedding(network, input_dim=volcab_size, output_dim=32) network = conv_1d(network, 64, 3, activation='relu', regularizer="L2") network = max_pool_1d(network, 2)…
基于Text-CNN模型的中文文本分类实战 流川枫 发表于AI星球订阅
Text-CNN 1.文本分类 转眼学生生涯就结束了,在家待就业期间正好有一段空闲期,可以对曾经感兴趣的一些知识点进行总结. 本文介绍NLP中文本分类任务中核心流程进行了系统的介绍,文末给出一个基于Text-CNN模型在搜狗新闻数据集上二分类的Demo. 文本分类是自然语言处理领域最活跃的研究方向之一,从样本数据的分类标签是否互斥上来说,可以分为文本多分类与文本多标签分类. 文本分类 目前文本分类在工业界的应用场景非常普遍,从新闻的分类.商品评论信息的情感分类到微博信息打标签辅助推荐系统,了解文…
基于Text-CNN模型的中文文本分类实战
Text-CNN 1.文本分类 转眼学生生涯就结束了,在家待就业期间正好有一段空闲期,可以对曾经感兴趣的一些知识点进行总结. 本文介绍NLP中文本分类任务中核心流程进行了系统的介绍,文末给出一个基于Text-CNN模型在搜狗新闻数据集上二分类的Demo. 文本分类是自然语言处理领域最活跃的研究方向之一,从样本数据的分类标签是否互斥上来说,可以分为文本多分类与文本多标签分类. 文本分类 目前文本分类在工业界的应用场景非常普遍,从新闻的分类.商品评论信息的情感分类到微博信息打标签辅助推荐系统,了解文…