BSGS算法 BSGS算法用于求解关于x的模方程\(A^x\equiv B\mod P\)(P为质数),相当于求模意义下的对数. 思想: 由费马小定理,\(A^{p-1}\equiv 1\mod P\),在p-1次方后开始循环,所以若原方程有解,\(x_{min}\in[0,P-1]\). 设\(x=i*m+j\),有\(A^{i*m+j}\equiv B\mod P\),移项得\({(A^m)}^i\equiv B*A^{-j}\mod P\),类似天天爱跑步,对于左右互不影响的等式可以开桶统…
Cipolla LL ksm(LL k,LL n) { LL s=1; for(;n;n>>=1,k=k*k%mo) if(n&1) s=s*k%mo; return s; } namespace number { LL D; struct Z { LL x,y; Z(LL _x=0,LL _y=0){x=_x,y=_y;} }; Z operator +(const Z &x,const Z &y) {return Z((x.x+y.x)%mo,(x.y+y.y)%m…
从这里开始 离散对数和BSGS算法 扩展BSGS算法 离散对数和BSGS算法 设$x$是最小的非负整数使得$a^{x}\equiv b\ \ \ \pmod{m}$,则$x$是$b$以$a$为底的离散对数,记为$x = ind_{a}b$. 假如给定$a, b, m$,考虑如何求$x$,或者输出无解,先考虑$(a, m) = 1$的情况. 定理1(欧拉定理) 若$(a, m) = 1$,则$a^{\varphi(m)}\equiv 1 \pmod{m}$. 证明这里就不给出,因为在百度上随便搜一…
BSGS算法总结 \(BSGS\)算法(Baby Step Giant Step),即大步小步算法,用于解决这样一个问题: 求\(y^x\equiv z\ (mod\ p)\)的最小正整数解. 前提条件是\((y,p)=1\). 我们选定一个大步长\(m=\sqrt p + 1\),设\(x=am+b\),那么显然有\(a,b\in[0,m)\).这样就有\(y^{am+b}\equiv z\ (mod\ p)\),就有\((y^m)^a=z*y^{-b}\ (mod\ p)\). 但是这个逆元…
对于同余式 \[x^2 \equiv n \pmod p\] 若对于给定的\(n, P\),存在\(x\)满足上面的式子,则乘\(n\)在模\(p\)意义下是二次剩余,否则为非二次剩余 我们需要计算的是在给定范围内所有满足条件的\(x\),同时为了方便,我们只讨论\(p\)是奇质数的情况 前置定理 \(x^2 \equiv (x+p)^2 \pmod p\) 证明:\(x^2 \equiv x^2 + 2xp + p^2 \pmod p\)显然成立 对于\(x^2 \equiv n \pmod…
其实思维难度不是很大,但是各种处理很麻烦,公式推导到最后就是一个bsgs算法解方程 /* 要给M行N列的网格染色,其中有B个不用染色,其他每个格子涂一种颜色,同一列上下两个格子不能染相同的颜色 涂色方案%100000007的结果是R,现在给出R,N,K,请求出最小的M 对于第一行来说,每个位置有k种选择,那么填色方案数是k^n 对于第二行来说,每个位置有k-1中选择,那么填色方案数时(k-1)^n种 依次类推,如果i+1行的某个格子上面是白格,那么这个格子有k种填色方案 将M行分为两部分,第一部…
BSGS算法是meet in the middle思想的一种应用,参考Yveh的博客我学会了BSGS的模版和hash表模板,,, 现在才会hash是不是太弱了,,, #include<cmath> #include<cstdio> #include<cstring> #include<algorithm> using namespace std; struct node{ static const int mo=100007; int a[100010],v…
BSGS算法 我是看着\(ppl\)的博客学的,您可以先访问\(ppl\)的博客 Part1 BSGS算法 求解关于\(x\)的方程 \[y^x=z(mod\ p)\] 其中\((y,p)=1\) 做法并不难,我们把\(x\)写成一个\(am-b\)的形式 那么,原式变成了 \(y^{am}=zy^b(mod\ p)\) 我们求出所有\(b\)可能的取值(0~m-1),并且计算右边的值 同时用哈希或者\(map\)之类的东西存起来,方便查询 对于左边,我们可以枚举所有可能的\(a\),然后直接查…
bsgs算法: 我们在逆元里曾经讲到过如何用殴几里得求一个同余方程的整数解.而\(bsgs\)就是用来求一个指数同余方程的最小整数解的:也就是对于\(a^x\equiv b \mod p\) 我们可以用\(bsgs\)在\(O(\sqrt n)\) 的复杂度内求出关于\(x\)的最小正整数解.(前提是\(p\)为质数) \(a^x\equiv b \mod p\) 我们可以知道如果我们的模数p是一个质数,我们将同余式的右边以逆元的形式乘到左边来,根据殴拉定理(因为p是质数,所以a,p互质)则我们…
题目: 给出A,B,C 求最小的x使得Ax=B  (mod C) 题解: bsgs算法的模板题 bsgs 全称:Baby-step giant-step 把这种问题的规模降低到了sqrt(n)级别 首先B的种类数不超过C种,结合鸽巢原理,所以Ax具有的周期性显然不超过C 所以一般的枚举算法可以O(C)解决这个问题 但是可以考虑把长度为C的区间分为k块,每块长度为b 显然x满足x=bi-p的形式(1<=i<=k,0<=p<b),所以Ax=B  (mod C)移项之后得到Abi=Ap*…