最近学习特征工程(Feature Enginnering)的相关技术,主要包含两块:特征选取(Feature Selection)和特征抓取(Feature Extraction).这里记录一些要点,作为备忘.   特征选取 R中的FSelector包实现了一些特征选取的算法,主要分两大类:   Algorithms for filtering attributes: cfs, chi.squared, information.gain, gain.ratio, symmetrical.unc…
一.什么是特征工程? "Feature engineering is the process of transforming raw data into features that better represent the underlying problem to the predictive models, resulting in improved model accuracy on unseen data." 简而言之,就是将原始数据转换为模型更容易理解的数据类型,从而提高模型…
概述:上节咱们说了特征工程是机器学习的一个核心内容.然后咱们已经学习了特征工程中的基础内容,分别是missing value handling和categorical data encoding的一些方法技巧.但是光会前面的一些内容,还不足以应付实际的工作中的很多情况,例如如果咱们的原始数据的features太多,咱们应该选择那些features作为咱们训练的features?或者咱们的features太少了,咱们能不能利用现有的features再创造出一些新的与咱们的target有更加紧密联系…
学习框架 特征工程(Feature Engineering) 数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已 什么是特征工程: 帮助我们使得算法性能更好发挥性能而已 sklearn主要用于特征工程pandas主要用于数据清洗.数据处理 特征工程包含如下3个内容: 1.特征抽取/特征提取 |__>字典特征抽取,应用DiceVectorizer实现对类别特征进行数值化.离散化 |__>文本特征抽取,应用CounterVertorize/TfIdfVectorize实现对文本特征数…
原文:http://dataunion.org/20276.html 作者:JasonDing1354 引言 在之前学习机器学习技术中,很少关注特征工程(Feature Engineering),然而,单纯学习机器学习的算法流程,可能仍然不会使用这些算法,尤其是应用到实际问题的时候,常常不知道怎么提取特征来建模. 特征是机器学习系统的原材料,对最终模型的影响是毋庸置疑的. 特征工程的重要意义 数据特征会直接影响你使用的预测模型和实现的预测结果.准备和选择的特征越好,则实现的结果越好. 影响预测结…
作者:韩信子@ShowMeAI 机器学习实战系列:https://www.showmeai.tech/tutorials/41 本文地址:https://www.showmeai.tech/article-detail/328 声明:版权所有,转载请联系平台与作者并注明出处 收藏ShowMeAI查看更多精彩内容 特征工程(feature engineering)指的是:利用领域知识和现有数据,创造出新的特征,用于机器学习算法. 特征:数据中抽取出来的对结果预测有用的信息. 特征工程:使用专业背景…
一般在machine learning意义上,我们常说的feature,是一种对数据的表达.当然,要衡量一种feature是否是合适的表达,要根据数据,应用,ML的模型,方法....很多方面来看.一般来说,Feature应该是informative(富有信息量),discriminative(有区分性)和independent(独立)的.那么具体怎么选择feature,其实一直是一个开放的问题.在机器学习里面,feature的选择是至关重要的:对于同一种学习的模型,同样的学习方法,同样的数据,选…
一.概述 Andrew Ng:Coming up with features is difficult, time-consuming, requires expert knowledge. "Applied machine learning" is basically feature engineering( 吴恩达, 人工智能和机器学习领域国际最权威学者之一:提取特征是困难的,耗时的,需要丰富的专家知识."应用机器学习"从根本上来说就是特征工程) 业界广泛流传:…
特征工程学习01-sklearn单机特征工程 小书匠 kindle  0.数据的导入 from sklearn.datasets import load_iris  #导入IRIS数据集  iris=load_iris()  #特征矩阵  print(iris.data[:5],len(iris.data))  #目标向量  print(iris.target[:5],len(iris.target))  [[ 5.1 3.5 1.4 0.2]  [ 4.9 3. 1.4 0.2]  [ 4.7…
本文转载自使用sklearn做单机特征工程 目录 目录 特征工程是什么 数据预处理 1 无量纲化 11 标准化 12 区间缩放法 13 标准化与归一化的区别 2 对定量特征二值化 3 对定性特征哑编码 4 缺失值计算 5 数据变换 6 回顾 特征选择 1 Filter 11 方差选择法 12 相关系数法 13 卡方检验 2 Wrapper 21 递归特征消除法 3 Embedded 31 基于惩罚项的特征选择法 32 基于树模型的特征选择法 4 回顾 降维 1 主成分分析法PCA 2 线性判别分…