形式: 採用sigmoid函数: g(z)=11+e−z 其导数为g′(z)=(1−g(z))g(z) 如果: 即: 若有m个样本,则似然函数形式是: 对数形式: 採用梯度上升法求其最大值 求导: 更新规则为: 能够发现,则个规则形式上和LMS更新规则是一样的.然而,他们的分界函数hθ(x)却全然不同样了(逻辑回归中h(x)是非线性函数).关于这部分内容在GLM部分解释. 注意:若h(x)不是sigmoid函数而是阈值函数: 这个算法称为感知学习算法.尽管得到更新准则尽管类似.但与逻辑回归全然不…
Logistic Regression 逻辑回归 1.模型 逻辑回归解决的是分类问题,并且是二元分类问题(binary classification),y只有0,1两个取值.对于分类问题使用线性回归不行,因为直线无法将样本正确分类. 1.1 Sigmoid Function 因为 y∈{0,1},我们也希望 hθ(x)∈{0,1}.第一种选择是 logistic函数或S型函数(logistic function/sigmoid function).g(z)值的范围在0-1之间,在z=0时为0.5…
指数分布族 The exponential family 因为广义线性模型是围绕指数分布族的.大多数常用分布都属于指数分布族,服从指数分布族的条件是概率分布可以写成如下形式:η 被称作自然参数(natural parameter),或正则参数canonical parameter),它是指数分布族唯一的参数T(y) 被称作充分统计量(sufficient statistic),很多情况下T(y)=y loga(η) 是log partition functione-a(η)是一个规范化常数,使得…
针对逻辑回归问题,我们在之前的课程已经学习过两种优化算法:我们首先学习了使用梯度下降法来优化代价函数…
分类问题和线性回归问题问题很像,只是在分类问题中,我们预测的y值包含在一个小的离散数据集里.首先,认识一下二元分类(binary classification),在二元分类中,y的取值只能是0和1.例如,我们要做一个垃圾邮件分类器,则为邮件的特征,而对于y,当它1则为垃圾邮件,取0表示邮件为正常邮件.所以0称之为负类(negative class),1为正类(positive class) 逻辑回归 首先看一个肿瘤是否为恶性肿瘤的分类问题,可能我们一开始想到的是用线性回归的方法来求解,如下图:…
机器学习三要素 机器学习的三要素为:模型.策略.算法. 模型:就是所要学习的条件概率分布或决策函数.线性回归模型 策略:按照什么样的准则学习或选择最优的模型.最小化均方误差,即所谓的 least-squares(在spss里线性回归对应的模块就叫OLS即Ordinary Least Squares): 算法:基于训练数据集,根据学习策略,选择最优模型的计算方法.确定模型中每个θi取值的计算方法,往往归结为最优化问题.对于线性回归,我们知道它是有解析解的,即正规方程 The normal equa…
我们将讨论逻辑回归. 逻辑回归是一种将数据分类为离散结果的方法. 例如,我们可以使用逻辑回归将电子邮件分类为垃圾邮件或非垃圾邮件. 在本模块中,我们介绍分类的概念,逻辑回归的损失函数(cost functon),以及逻辑回归对多分类的应用. 我们还涉及正规化. 机器学习模型需要很好地推广到模型在实践中没有看到的新例子. 我们将介绍正则化,这有助于防止模型过度拟合训练数据. Classification 分类问题其实和回归问题相似,不同的是分类问题需要预测的是一些离散值而不是连续值. 如垃圾邮件分…
逻辑回归 对于一个二分类(binary classification)问题,\(y \in \left\{0, 1\right\}\),如果直接用线性回归去预测,结果显然是非常不准确的,所以我们采用一种新的假设函数: \[ h_{\theta}(x) = g(\theta^{T}x) = \frac{1}{1 + e^{-\theta^{T}x}} \] 其中 \[ g(z) = \frac{1}{1 + e^{-z}} \] 被称为sigmoid函数,这个函数的的值域是\((0, 1)\),且…
Lecture7 Regularization 正则化 7.1 过拟合问题 The Problem of Overfitting7.2 代价函数 Cost Function7.3 正则化线性回归  Regularized Linear Regression7.4 正则化的逻辑回归模型 Regularized Logistic Regression 7.1 过拟合问题 The Problem of Overfitting 参考视频: 7 - 1 - The Problem of Overfitti…
本文是斯坦福大学CS 229机器学习课程的基础材料,原始文件下载 原文作者:Zico Kolter,修改:Chuong Do, Tengyu Ma 翻译:黄海广 备注:请关注github的更新,线性代数和概率论已经更新完毕. CS229 机器学习课程复习材料-线性代数 目录 CS229 机器学习课程复习材料-线性代数 线性代数复习和参考 1. 基础概念和符号 1.1 基本符号 2.矩阵乘法 2.1 向量-向量乘法 2.2 矩阵-向量乘法 2.3 矩阵-矩阵乘法 3 运算和属性 3.1 单位矩阵和…