首先要推荐一下:http://www.alidata.org/archives/1470 阿里的大牛在上面的文章中比较详细的介绍了shuffle过程中mapper和reduce的每个过程,强烈推荐先读一下. 不过,上文没有写明一些实现的细节,比如:spill的过程,mapper生成文件的 partition是怎么做的等等,相信有很多人跟我一样在看了上面的文章后还是有很多疑问,我也是带着疑问花了很久的看了cdh4.1.0版本 shuffle的逻辑,整理成本文,为以后回顾所用. 首先用一张图展示下m…
一直对书和各种介绍不太满意, 终于看到一篇比较好的了,迅速转载. 首先要推荐一下:http://www.alidata.org/archives/1470 阿里的大牛在上面的文章中比较详细的介绍了shuffle过程中mapper和reduce的每个过程,强烈推荐先读一下. 不过,上文没有写明一些实现的细节,比如:spill的过程,mapper生成文件的 partition是怎么做的等等,相信有很多人跟我一样在看了上面的文章后还是有很多疑问,我也是带着疑问花了很久的看了cdh4.1.0版本 shu…
http://yanbohappy.sinaapp.com/?p=110 最新版本的Hadoop代码中已经默认了Protocol buffer(以下简称PB,http://code.google.com/p/protobuf/)作为RPC的默认实现,原来的WritableRpcEngine已经被淘汰了.来自cloudera的Aaron T. Myers在邮件中这样说的"since PB can provide support for evolving protocols in a compati…
原文地址:http://yanbohappy.sinaapp.com/?p=110 最新版本的Hadoop代码中已经默认了Protocol buffer(以下简称PB,http://code.google.com/p/protobuf/)作为RPC的默认实现,原来的WritableRpcEngine已经被淘汰了.来自cloudera的Aaron T. Myers在邮件中这样说的“since PB can provide support for evolving protocols in a co…
一.概要描述 shuffle是MapReduce的一个核心过程,因此没有在前面的MapReduce作业提交的过程中描述,而是单独拿出来比较详细的描述. 根据官方的流程图示如下: 本篇文章中只是想尝试从代码分析来说明在map端是如何将map的输出保存下来等待reduce来取. 在执行每个map task时,无论map方法中执行什么逻辑,最终都是要把输出写到磁盘上.如果没有reduce阶段,则直接输出到hdfs上,如果有有reduce作业,则每个map方法的输出在写磁盘前线在内存中缓存.每个map…
下午对着源码看陆喜恒. Hadoop实战(第2版)6.4.1  (Shuffle和排序)Map端,发现与Hadoop 1.2.1的源码有些出入.下面作个简单的记录,方便起见,引用自书本的语句都用斜体表示. 依书本,从MapTask.java开始.这个类有多个内部类: 从书的描述可知,collect()并不在MapTask类,而在MapOutputBuffer类,其函数功能是 1.定义输出内存缓冲区为环形结构2.定义输出内存缓冲区内容到磁盘的操作 在collect函数中将缓冲区的内容写出时会调用s…
Hadoop基础-Map端链式编程之MapReduce统计TopN示例 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.项目需求 对“temp.txt”中的数据进行分析,统计出各个年份(第15~19列)总排行前十的最高气温(第87~92列),由于博客园无法上传大文件的文本,因此我把该文本的内容放在博客园的另一个链接了(需要的戳我).,如果网页打不开的话也就可以去百度云盘里下载副本,链接:链接:https://pan.baidu.com/s/12aZFcO2XoegUGMAb…
  最近在项目中开展重构活动,对Map端内存尽量要省一些,当前的系统中Map端内存最高占用大概3G左右(设置成2G时会导致Java Heap OOM).虽然个人觉得占用不算多,但是显然这样的结果想要试图去说服一些对内存占用非常挑剔的C++程序员们理由还是不够,于是便通过一定的方式对内存的占用进行了分析,刨根问底.   关于运行时内存占用可以参考文章:http://brandnewuser.iteye.com/blog/2113828, 这里采用的是简单的方式,通过反射将内存MemoryCount…
hadoop的压缩解压缩 hadoop对于常见的几种压缩算法对于我们的mapreduce都是内置支持,不需要我们关心.经过map之后,数据会产生输出经过shuffle,这个时候的shuffle过程特别需要消耗网络资源,它传输的数据量越少,对作业的运行时间越有意义,在这种情况下,我们可以对输出进行一个压缩.输出压缩之后,reducer就要接收,然后再解压,reducer处理完之后也需要做输出,也可以做压缩.对于我们程序而言,输入的压缩是我们原来的,不是程序决定的,因为输入源就是这样子,reduce…
package com.bank.service; import java.io.IOException; import org.apache.hadoop.conf.Configuration;import org.apache.hadoop.conf.Configured;import org.apache.hadoop.fs.Path;import org.apache.hadoop.io.LongWritable;import org.apache.hadoop.io.NullWrita…