生成模型的两大代表:VAE和GAN】的更多相关文章

我对GAN"生成对抗网络"(Generative Adversarial Networks)的看法: 前几天在公开课听了新加坡国立大学[机器学习与视觉实验室]负责人冯佳时博士在[硬创公开课]的GAN分享.GAN现在对于无监督图像标注来说是个神器,不过在NLP领域用的还不是那么广泛. 笔者看来,深度学习之前都没有对数组分布进行细致考察,譬如之前我对NLP词向量就产生过很多疑虑,为啥这么长条的数据组,没看到很好地去深挖.解读词向量的分布?分布这么重要,不值得Dig Deep? 生成模型GA…
GAN:通过 将 样本 特征 化 以后, 告诉 模型 哪些 样本 是 黑 哪些 是 白, 模型 通过 训练 后, 理解 了 黑白 样本 的 区别, 再输入 测试 样本 时, 模型 就可以 根据 以往 的 经验 判断 是 黑 还是 白. 与 这些 分类 的 算法 不同, GAN 的 基本 原理 是, 有两 个 相生相克 的 模型 Generator 和 Discriminator,Generator 随机 生成 样本, Discriminator 将 真实 样本 标记 为 Real, 将 Gene…
自编码器生成模型入门 之所以讲解本章内容,原因有三. 生成模型对大多数人来说是一个全新的领域.大多数人一开始接触到的往往都是机器学习中的分类任务--也许因为它们更为直观:而生成模型试图生成看起来很逼真的样本,所以人们对它了解甚少.考虑到自编码器(最近GAN的前身)丰富的资源和研究,所以选择在一个更简单的环境介绍生成模型. 生成模型非常具有挑战性.由于生成模型代表性不足,大多数人不知道典型的生成结构是什么样子的,也不知道面临何种挑战.尽管自编码器在许多方面与最常用的模型相近(例如,有一个明确的目标…
本文经机器之心(微信公众号:almosthuman2014)授权转载,禁止二次转载,原文. 选自 Open AI 作者:ANDREJ KARPATHY, PIETER ABBEEL, GREG BROCKMAN, PETER CHEN, VICKI CHEUNG, ROCKY DUAN, IAN GOODFELLOW 等 机器之心编译 参与:孙睿.吴攀 引言:这篇博文介绍了 OpenAI 的首批研究结果.研究人员分别从事的四个研究项目贯穿了一个共同的主题:在机器学习中提升或使用生成模型,无监督学…
https://blog.csdn.net/y80gDg1/article/details/81463731 感谢阅读腾讯AI Lab微信号第34篇文章.当地时间 7 月 10-15 日,第 35 届国际机器学习会议(ICML 2018)在瑞典斯德哥尔摩成功举办.ICML 2018 所接收的论文的研究主题非常多样,涵盖深度学习模型/架构/理论.强化学习.优化方法.在线学习.生成模型.迁移学习与多任务学习.隐私与安全等,在本文中,腾讯 AI Lab 的研究者结合自身的研究重心和研究兴趣对部分 IC…
目录 Graph Neural Network Graph Convolutional Network GraphSAGE Graph Attention Network Tips Deep Generative Models for Graphs GraphRNN: a Auto-Regressive Models Tractability 转自本人:https://blog.csdn.net/New2World/article/details/106160122 Graph Neural N…
IoC(Inversion of Control): IOC的基本概念是:不创建对象,但是描述创建它们的方式.在代码中不直接与对象和服务连接,但在配置文件中描述哪一个组件需要哪一项服务.容器负责将这些联系在一起. 其原理是基于OO设计原则的The Hollywood Principle:Don't call us, we'll call you(别找我,我会来找你的).也就是说,所有的组件都是被动的(Passive),所有的组件初始化和调用都由容器负责.组件处在一个容器当中,由容 器负责管理.…
生成模型(Generative)和判别模型(Discriminative) 引言    最近看文章<A survey of appearance models in visual object tracking>(XiLi,ACMTIST,2013),在文章的第4节第1段有这样的描述,“Recently,visualobject tracking has been posed as a tracking-by-detectionproblem, where statistical modeli…
引入 监督学习的任务就是学习一个模型(或者得到一个目标函数),应用这一模型,对给定的输入预测相应的输出.这一模型的一般形式为一个决策函数Y=f(X),或者条件概率分布P(Y|X). 监督学习方法又可以分为生成方法(generative approach)和判别方法(discriminative approach).所学到的模型分别为生成模型(generative model)和判别模型(discriminative model). 决策函数和条件概率分布 决策函数Y=f(X) 决策函数Y=f(X…
一.问题描述 1.1文本建模相关 统计文本建模的目的其实很简单:就是估算一组参数,这组参数使得整个语料库出现的概率最大.这是很简单的极大似然的思想了,就是认为观测到的样本的概率是最大的.建模的目标也是这样,下面就用数学来表示吧.一开始来说,先要注意假设了一些隐变量z,也就是topic.每个文档都符合一个topic的分布,另外是每个topic里面的词也是符合一个分布的,这个似然是以文档为单位的.极大似然式子全部写出来是下面的样子的其中的M表示文档个数.其中的α,就是每个文档符合的那个topic分布…