Markov chain】的更多相关文章

主讲人 网络上的尼采 (新浪微博: @Nietzsche_复杂网络机器学习) 网络上的尼采(813394698) 9:05:00  今天的主要内容:Markov Chain Monte Carlo,Metropolis-Hastings,Gibbs Sampling,Slice Sampling,Hybrid Monte Carlo. 上一章讲到的平均场是统计物理学中常用的一种思想,将无法处理的复杂多体问题分解成可以处理的单体问题来近似,变分推断便是在平均场的假设约束下求泛函L(Q)极值的最优化…
Nice R Code Punning code better since 2013 RSS Blog Archives Guides Modules About Markov Chain Monte Carlo 10 JUNE 2013 This topic doesn’t have much to do with nicer code, but there is probably some overlap in interest. However, some of the topics th…
(学习这部分内容大约需要1.3小时) 摘要 马尔科夫链蒙特卡洛(Markov chain Monte Carlo, MCMC) 是一类近似采样算法. 它通过一条拥有稳态分布 \(p\) 的马尔科夫链对目标分布 \(p\) 进行采样. 预备知识 学习MCMC需要以下预备知识 条件分布: MCMC常常被用于从条件分布中采样. 蒙特卡洛估计(Monte Carlo estimation) 马尔科夫链(Markov chains) 学习目标 知道基本的问题设定: 即你希望从一个难以处理的分布中采样近似样…
马尔科夫链的蒙特卡洛采样的核心思想是构造一个Markov chain,使得从任意一个状态采样开始,按该Markov chain转移,经过一段时间的采样,逼近平稳分布stationary distribution/equilibrium distribution(目标分布),最后选用逼近后的样本作为最终的采样.那么为什么要用MCMC呢,在什么情况下使用呢,这里给出一些个人的学习心 得. 1. 什么情况下用? 很多书籍或论文给出的情况是,目标分布难以被直接估计的情况下使用,那么具 体是什么情况呢?举…
w https://en.wikipedia.org/wiki/Markov_chain https://zh.wikipedia.org/wiki/马尔科夫链 In probability theory and related fields, a Markov process, named after the Russian mathematician Andrey Markov, is a stochastic process that satisfies the Markov proper…
1. 联合概率(joint distribution)的链式法则 基于链式法则的 explicit formula: p(x1:n)===p(x)p(x1)∏i=2np(xi|x1,-,xi−1)∏i=1np(xi|x1,-,xi−1) 等式左端表示联合概率分布,joint distribution,所谓联合概率表示的事件同时发生的概率,如 p(x3|x1,x2),的实际含义恰在于,事件 x1 和事件 x2 同时发生的情况下,事件 x3 发生的概率. 2. 从 chain rule 到 Mark…
不错的文章:LDA-math-MCMC 和 Gibbs Sampling 可作为精进MCMC抽样方法的学习材料. 简单概率分布的模拟 Box-Muller变换原理详解 本质上来说,计算机只能生产符合均匀分布的采样.如果要生成其他分布的采样,就需要借助一些技巧性的方法,例如我们在前面的文章提到过的逆变换采样.拒绝采样以及自适应的拒绝采样等等. 涉及到 "逆变换" [Bayes] runif: Inversion Sampling 例如:U1, U2是均匀分布,可得到两个高斯分布的变量X,…
Math.Net Numerics has capability to conduct Markov Chair Monte Carlo simulations, yet the document is very sparse. The only examples I found are in F# (see below). In this note, I attempt to port these examples into C# and hope others may find it use…
http://www.zhihu.com/question/20962240 Yang Eninala杜克大学 生物化学博士 线性代数 收录于 编辑推荐 •2216 人赞同 ×××××11月22日已更新××××× 隐马尔可夫(HMM)好讲,简单易懂不好讲.我认为 @者也的回答没什么错误,不过我想说个更通俗易懂的例子.我希望我的读者不是专家,而是对这个问题感兴趣的入门者,所以我会多阐述数学思想,少写公式.霍金曾经说过,你多写一个公式,就会少一半的读者.所以时间简史这本关于物理的书和麦当娜关于性的书…