mapPartitions】的更多相关文章

区别在于sc.map是将RDD下的所有行数据统计处理.而sc.mapPartitions是按RDD分区进行数据统计处理. 测试一下: val data = sc.parallelize(1 to 6,3) def mapTest(param1:Int):Int={ println("by map,data:"+param1) param1*2 } def mapPartitionsTest(listParam:Iterator[Int]):Iterator[Int]={ println…
与map方法类似,map是对rdd中的每一个元素进行操作,而mapPartitions(foreachPartition)则是对rdd中的每个分区的迭代器进行操作.如果在map过程中需要频繁创建额外的对象(例如将rdd中的数据通过jdbc写入数据库,map需要为每个元素创建一个链接而mapPartition为每个partition创建一个链接),则mapPartitions效率比map高的多. SparkSql或DataFrame默认会对程序进行mapPartition的优化. Demo 实现将…
在spark中,map与mapPartitions两个函数都是比较常用,这里使用代码来解释一下两者区别 import org.apache.spark.{SparkConf, SparkContext} import scala.collection.mutable.ArrayBuffer object MapAndPartitions { def main(args: Array[String]): Unit = { val sc = new SparkContext(new SparkCon…
mapPartitions操作与 map类似,只不过映射的参数由RDD中的每一个元素变成了RDD中每一个分区的迭代器,如果映射过程需要频繁创建额外的对象,使用mapPartitions操作要比map操作效率高效许多.比如将RDD中的所有数据通过JDBC链接写入数据库,如果使用map函数,可能要为每个元素创建一个connection,开销很大.如果使用mapPartitions,那么只需要针对一个分区建立connection. Scala中的yield的主要作用是记住每次迭代中的有关值,并逐一存入…
map/flatMap/filter/mapPartitions/mapPartitionsWithIndex/sample:…
package dayo1 import org.apache.spark.{SparkConf, SparkContext} import scala.collection.mutable.ArrayBuffer object MapAndPartitions { def main(args: Array[String]): Unit = { val cof = new SparkConf ().setAppName ( this.getClass.getSimpleName ).setMas…
import org.apache.spark.SparkConf;import org.apache.spark.api.java.JavaRDD;import org.apache.spark.api.java.JavaSparkContext;import org.apache.spark.api.java.function.FlatMapFunction;import org.apache.spark.api.java.function.VoidFunction;import java.…
原文地址:https://blog.csdn.net/helloxiaozhe/article/details/80492933 1.创建一个RDD变量,通过help函数,查看相关函数定义和例子: >>> a = sc.parallelize([(1,2),(3,4),(5,6)]) >>> a ParallelCollectionRDD[21] at parallelize at PythonRDD.scala:475 >>> help(a.map)…
区别: 1.map是对rdd中每一个元素进行操作 2.mapPartitions是对rdd中每个partition的迭代器进行操作 mapPartitions优点: 1.若是普通map,比如一个partition中有一万条数据,那么function要执行一万次,而使用mapPartions,一个task只执行一次function,function一次接收所有数据,只执行一次,性能高 2.若在map中需要频繁创建额外对象(如将rdd的数据通过jdbc写入数据库,map需要为每条数据创建一个链接,m…
mapPartitions--Transformation类算子 代码示例 result   mapPartitionsWithIndex--Transformation类算子 代码示例 result  …
[TOC] 前言 在WeTest舆情项目中,需要对每天千万级的游戏评论信息进行词频统计,在生产者一端,我们将数据按照每天的拉取时间存入了Kafka当中,而在消费者一端,我们利用了spark streaming从kafka中不断拉取数据进行词频统计.本文首先对spark streaming嵌入kafka的方式进行归纳总结,之后简单阐述Spark streaming+kafka在舆情项目中的应用,最后将自己在Spark Streaming+kafka的实际优化中的一些经验进行归纳总结.(如有任何纰漏…
初识spark,需要对其API有熟悉的了解才能方便开发上层应用.本文用图形的方式直观表达相关API的工作特点,并提供了解新的API接口使用的方法.例子代码全部使用python实现. 1. 数据源准备 准备输入文件: $ cat /tmp/in apple bag bag cat cat cat 启动pyspark: $ ./spark/bin/pyspark 使用textFile创建RDD: >>> txt = sc.textFile("file:///tmp/in"…
Spark Streaming+Kafka 前言 在WeTest舆情项目中,需要对每天千万级的游戏评论信息进行词频统计,在生产者一端,我们将数据按照每天的拉取时间存入了Kafka当中,而在消费者一端,我们利用了spark streaming从kafka中不断拉取数据进行词频统计.本文首先对spark streaming嵌入kafka的方式进行归纳总结,之后简单阐述Spark streaming+kafka在舆情项目中的应用,最后将自己在Spark Streaming+kafka的实际优化中的一些…
1. 引言 什么是规则引擎 一个业务规则包含一组条件和在此条件下执行的操作,它们表示业务规则应用程序的一段业务逻辑.业务规则通常应该由业务分析人员和策略管理者开发和修改,但有些复杂的业务规则也可以由技术人员使用面向对象的技术语言或脚本来定制.业务规则的理论基础是:设置一个或多个条件,当满足这些条件时会触发一个或多个操作. 规则引擎(rule engine)是指将复杂的业务逻辑抽象成规则,然后使用特定的算法(比如Rete)对规则进行求值等操作.简单点说,规则引擎就是实现复杂业务逻辑的框架. 为什么…
Spark的核心就是RDD,对SPARK的使用入门也就是对RDD的使用,包括action和transformation 对于Java的开发者,单单看文档根本是没有办法理解每个API的作用的,所以每个SPARK的新手,最好按部就班直接学习scale,  那才是一个高手的必经之路,但是由于项目急需使用,没有闲工夫去学习一门语言,只能从JAVA入门的同学,  福利来了.... 对API的解释: 1.1 transform l  map(func):对调用map的RDD数据集中的每个element都使用…
摘要  1.使用reduceByKey/aggregateByKey替代groupByKey 2.使用mapPartitions替代普通map 3.使用foreachPartitions替代foreach 4.使用filter之后进行coalesce操作 5.使用repartitionAndSortWithinPartitions替代repartition与sort类操作 6.使用broadcast使各task共享同一Executor的集合替代算子函数中各task传送一份集合 7.使用相同分区方…
Spark相比于Mapreduce的一大优势就是提供了很多的方法,可以直接使用:另一个优势就是执行速度快,这要得益于DAG的调度,想要理解这个调度规则,还要理解函数之间的依赖关系. 本篇就着重描述下Spark提供的Transformations方法. 依赖关系 宽依赖和窄依赖 窄依赖(narrow dependencies) 窄依赖是指父RDD仅仅被一个子RDD所使用,子RDD的每个分区依赖于常数个父分区(O(1),与数据规模无关). 输入输出一对一的算子,且结果RDD的分区结构不变.主要是ma…
原文链接:http://www.jianshu.com/p/c0181667daa0 RDD.DataFrame和DataSet是容易产生混淆的概念,必须对其相互之间对比,才可以知道其中异同. RDD和DataFrame RDD-DataFrame 上图直观地体现了DataFrame和RDD的区别.左侧的RDD[Person]虽然以Person为类型参数,但Spark框架本身不了解Person类的内部结构.而右侧的DataFrame却提供了详细的结构信息,使得Spark SQL可以清楚地知道该数…
最近碰到一个分词匹配需求--给定一个关键词表,作为自定义分词词典,用户query文本分词后,是否有词落入这个自定义词典中?现有的大多数Java系的分词方案基本都支持添加自定义词典,但是却不支持HDFS路径的.因此,我需要寻找一种简单高效的分词方案,稍作包装即可支持HDFS.MMSeg分词算法正是完美地契合了这种需求. 1. MMseg简介 MMSeg是蔡志浩(Chih-Hao Tsai)提出的基于字符串匹配(亦称基于词典)的中文分词算法.基于词典的分词方案无法解决歧义问题,比如,"武汉市长江大桥…
在前一篇中介绍了使用API做Distinct Count,但是精确计算的API都较慢,那有没有能更快的优化解决方案呢? 1. Bitmap介绍 <编程珠玑>上是这样介绍bitmap的: Bitmap是一个十分有用的数据结构.所谓的Bitmap就是用一个bit位来标记某个元素对应的Value,而Key即是该元素.由于采用了Bit为单位来存储数据,因此在内存占用方面,可以大大节省. 简而言之--用一个bit(0或1)表示某元素是否出现过,其在bitmap的位置对应于其index.<编程珠玑&…
Spark官方文档 - 中文翻译 Spark版本:1.6.0 转载请注明出处:http://www.cnblogs.com/BYRans/ 1 概述(Overview) 2 引入Spark(Linking with Spark) 3 初始化Spark(Initializing Spark) 3.1 使用Spark Shell(Using the Shell) 4 弹性分布式数据集(RDDs) 4.1 并行集合(Parallelized Collections) 4.2 外部数据库(Externa…
本来应该上周更新的,结果碰上五一,懒癌发作,就推迟了 = =.以后还是要按时完成任务.废话不多说,第四章-第六章主要讲了三个内容:键值对.数据读取与保存与Spark的两个共享特性(累加器和广播变量). 键值对(PaiRDD) 1.创建 #在Python中使用第一个单词作为键创建一个pairRDD,使用map()函数 pairs = lines.map(lambda x:(x.split(" ")[0],x)) 2.转化(Transformation) 转化操作很多,有reduceByK…
5.2.从数据中提取合适的特征 [root@demo1 ch05]# sed 1d train.tsv > train_noheader.tsv[root@demo1 ch05]# lltotal 42920-rw-r--r-- 1 root root 21972457 Jan 31 15:03 train_noheader.tsv-rw-r--r-- 1 root root 21972916 Jan 31 15:00 train.tsv[root@demo1 ch05]# hdfs dfs -…
最近在研究机器学习,使用的工具是spark,本文是针对spar最新的源码Spark1.6.0的MLlib中的logistic regression, linear regression进行源码分析,其理论部分参考:http://www.cnblogs.com/ljy2013/p/5129610.html 下面我们跟随我的demo来一步一步解剖源码,首先来看一下我的demo: package org.apache.spark.mllib.classification import org.apac…
转自:http://tech.meituan.com/spark-tuning-basic.html?from=timeline 前言 开发调优 调优概述 原则一:避免创建重复的RDD 原则二:尽可能复用同一个RDD 原则三:对多次使用的RDD进行持久化 原则四:尽量避免使用shuffle类算子 原则五:使用map-side预聚合的shuffle操作 原则六:使用高性能的算子 原则七:广播大变量 原则八:使用Kryo优化序列化性能 原则九:优化数据结构 资源调优 调优概述 Spark作业基本运行…
数据清洗时数据科学项目的第一步,往往也是最重要的一步. 本章主要做数据统计(总数.最大值.最小值.平均值.标准偏差)和判断记录匹配程度. Spark编程模型 编写Spark程序通常包括一系列相关步骤: 1. 在输入数据集上定义一组转换. 2. 调用action,用以将转换后的数据集保存到持久存储上,或者把结果返回到驱动程序的本地内存. 3. 运行本地计算,本地计算处理分布式计算的结果.本地计算有助于你确定下一步的转换和action. 2.4 小试牛刀:Spark shell和SparkConte…
RDD是什么? RDD是Spark中的抽象数据结构类型,任何数据在Spark中都被表示为RDD.从编程的角度来看,RDD可以简单看成是一个数组.和普通数组的区别是,RDD中的数据是分区存储的,这样不同分区的数据就可以分布在不同的机器上,同时可以被并行处理.因此,Spark应用程序所做的无非是把需要处理的数据转换为RDD,然后对RDD进行一系列的变换和操作从而得到结果.本文为第一部分,将介绍Spark RDD中与Map和Reduce相关的API中.   如何创建RDD? RDD可以从普通数组创建出…
 Spark 内部管理机制 Spark的内存管理自从1.6开始改变.老的内存管理实现自自staticMemoryManager类,然而现在它被称之为"legacy". "Legacy" 默认已经被废弃掉了,它意味着相同的代码在1.5版本与1.6版本的输出结果将会不同.需要注意的是,出于兼容性的考虑,你依旧可以使用"legacy",通过设置spark.memory.useLegacyMode改变. 自从spark1.6版本开始,内存管理将实现自Un…
Spark学习笔记 Spark简介 spark 可以很容易和yarn结合,直接调用HDFS.Hbase上面的数据,和hadoop结合.配置很容易. spark发展迅猛,框架比hadoop更加灵活实用.减少了延时处理,提高性能效率实用灵活性.也可以与hadoop切实相互结合. spark核心部分分为RDD.Spark SQL.Spark Streaming.MLlib.GraphX.Spark R等核心组件解决了很多的大数据问题,其完美的框架日受欢迎.其相应的生态环境包括zepplin等可视化方面…
http://mp.weixin.qq.com/s?__biz=MjM5NDMwNjMzNA==&mid=2651805828&idx=1&sn=2f413828d1fdc6a64bdbb25c51508dfc&scene=2&srcid=0519iChOETxAx0OeGoHnm7Xk&from=timeline&isappinstalled=0#rd Spark性能优化指南——基础篇 2016-05-18 优才网 前言 在大数据计算领域,Spar…