Adaboost算法及其代码实现】的更多相关文章

. . Adaboost算法及其代码实现 算法概述 AdaBoost(adaptive boosting),即自适应提升算法. Boosting 是一类算法的总称,这类算法的特点是通过训练若干弱分类器,然后将弱分类器组合成强分类器进行分类. 为什么要这样做呢?因为弱分类器训练起来很容易,将弱分类器集成起来,往往可以得到很好的效果. 俗话说,"三个臭皮匠,顶个诸葛亮",就是这个道理. 这类 boosting 算法的特点是各个弱分类器之间是串行训练的,当前弱分类器的训练依赖于上一轮弱分类器…
一.积分图介绍 定义:图像左上方的像素点值的和: 在Adaboost算法中可用于加速计算Haar或MB-LBP特征值,如下图: 二.代码实现 #include <opencv/highgui.h> #include <opencv/cv.h> #include <opencv2/imgproc/imgproc_c.h> using namespace cv; int calcIntImage(unsigned char *pucSrcImage, unsigned in…
在集成学习原理小结中,我们讲到了集成学习按照个体学习器之间是否存在依赖关系可以分为两类: 第一个是个体学习器之间存在强依赖关系: 另一类是个体学习器之间不存在强依赖关系. 前者的代表算法就是提升(boosting)系列算法.在boosting系列算法中, Adaboost是最著名的算法之一.Adaboost既可以用作分类,也可以用作回归.本文就对Adaboost算法做一个总结. 一 回顾boosting算法的基本原理 AdaBoost是典型的Boosting算法,属于Boosting家族的一员.…
目录 AdaBoost算法代码(鸢尾花分类) 一.导入模块 二.导入数据 三.构造决策边界 四.训练模型 4.1 训练模型(n_e=10, l_r=0.8) 4.2 可视化 4.3 训练模型(n_estimators=300, learning_rate=0.8) 4.4 训练模型(n_estimators=300, learning_rate=0.5) 4.5 训练模型(n_estimators=600, learning_rate=0.7) 更新.更全的<机器学习>的更新网站,更有pyth…
声明: 这篇笔记是自己对AdaBoost原理的一些理解,如果有错,还望指正,俯谢- 背景: AdaBoost算法,这个算法思路简单,但是论文真是各种晦涩啊-,以下是自己看了A Short Introduction to Boosting和PRML的一些笔记. 摔- 正文: AdaBoost算法,是一种组合算法(通过多个弱分类器,组合成一个强分类器): 关于AdaBoost算法的流程,简单的描述,我们以A Short Introduction to Boosting中提到的用AdaBoosting…
AdaBoost原理与代码实现 本文系作者原创,转载请注明出处: https://www.cnblogs.com/further-further-further/p/9642899.html 基本思路 Adaboost体现的是“三个臭皮匠,胜过一个诸葛亮”,它是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器), 然后把这些弱分类器集合起来,构成一个更强的最终分类器(强分类器).训练过程如下(参考Andy的机器学习--浅析Adaboost算法,他说得非常形象,贴切.) 简单的…
Adaboost 算法实例解析 1 Adaboost的原理 1.1 Adaboost基本介绍 AdaBoost,是英文"Adaptive Boosting"(自适应增强)的缩写,由Yoav Freund和Robert Schapire在1995年提出.Adaboost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这 Adaboost 些弱分类器集合起来,构成一个更强的最终分类器(强分类器).其算法本身是通过改变数据分布来实现的,它根据每次训练集之中每个…
Python程序 ''' 数据集:Mnist 训练集数量:60000(实际使用:10000) 测试集数量:10000(实际使用:1000) 层数:40 ------------------------------ 运行结果: 正确率:97% 运行时长:65m ''' import time import numpy as np def loadData(fileName): ''' 加载文件 :param fileName:要加载的文件路径 :return: 数据集和标签集 ''' # 存放数据…
<Adaboost算法的原理与推导>一文为他人所写,原文链接: http://blog.csdn.net/v_july_v/article/details/40718799 另外此文大部分是摘录李航的<统计学笔记>一书,原书下载链接:http://vdisk.weibo.com/s/z4UjMcqGpoNTw?from=page_100505_profile&wvr=6 在根据文中推导是发现有计算错误以及省略的步骤,在下文将会进行说明. ------------------…
一,引言 前面几章的介绍了几种分类算法,当然各有优缺.如果将这些不同的分类器组合起来,就构成了我们今天要介绍的集成方法或者说元算法.集成方法有多种形式:可以使多种算法的集成,也可以是一种算法在不同设置下的集成,还可以将数据集的不同部分分配不同的分类器,再将这些分类器进行集成. adaBoost分类器就是一种元算法分类器,adaBoost分类器利用同一种基分类器(弱分类器),基于分类器的错误率分配不同的权重参数,最后累加加权的预测结果作为输出. 1 bagging方法 在介绍adaBoost之前,…