一.案例背景 在产品迭代过程中,通常需要根据用户的属性进行归类,也就是通过分析数据,对用户进行归类,以便于在推送及转化过程中获得更大的收益. 本案例是基于某互联网公司的实际用户购票数据为研究对象,对用户购票的时间,购买的金额进行了采集,每个用户用手机号来区别唯一性.数据分析人员根据用户购买的时间和金额,通过建立RFM模型,来计算出用户最近最近一次购买的打分,用户购买频率的打分,用户购买金额的打分,然后根据三个分数进行一个加权打分,和综合打分.业务人员可以根据用户的打分情况,对不同的用户进行个…
RFM模型 在众多的客户价值分析模型中,RFM模型是被广泛应用的,尤其在零售和企业服务领域堪称经典的分类手段.它的核心定义从基本的交易数据中来,借助恰当的聚类算法,反映出对客户较为直观的分类指示,对于没有数据分析和机器学习技术支撑的初创企业,它是简单易上手的客户分析途径之一. RFM模型主要有三项指标: Recency:最近消费时间间隔 Frequency:消费频率 Monetary:消费金额 我们为客户在这三项指标上进行打分,那么总共会有27种组合的可能,使用K-Means算法,能够缩减到指定…
什么是用户价值? 用户价值就是对公司来说有用的地方,比如有的公司看中用户的消费能力,有的公司则看中用户的忠诚度 .各公司的业务目的不同,用户价值的体现自然也不同.这里主要说一下适用于电商的RFM模型. 什么是RFM模型? RFM模型根据用户最近一次消费时间R,消费频率F,消费金额M,计算出RFM值,通过RFM这三个维度来评估用户的价值.   R(Recency):最近一次消费.用户距离上一次消费的时间间隔.R值越大,表示用户最近一次消费的时间距离现在越久.R指标反应了用户对品牌的熟悉度和回购频率…
RMF含义 R(Recency)(用户粘性,越小越好):用户最近一次交易时间的间隔.R值越大,表示用户交易发生的日期越久,反之则表示用户交易发生的日期越近 F(Frequency)(用户忠诚度,越大越好):用户在最近一段时间内交易的次数,F值越大,表示客户交易越频繁,反之则表示用户交易不够活跃. M(Monetary)(用户贡献度,越大越好):用户在最近一段时间内交易的金额.M值越大,表示用户价值越高,反之则表示用户价值越低. R F M 用户群体类型 0 1 1 重要价值用户 1 1 1 重要…
应用场景: 可以应用在不同行业的客户分类管理上,比如航空公司,传统的RFM模型不再适用,通过RFM模型的变形LRFMC模型实现客户价值分析:基于消费者数据的精细化营销 应用价值: LRFMC模型构建之后使用了经典的聚类算法-K-Means算法来对客户进行细分,而不是传统的来与参考值对比进行手工分类,使得准确率和效率得到了大大提升,从而实现客户价值分析,进行精准的价格和服务设置: 经常买机票的朋友不知道有没有发现,机票的价格通常“阴晴不定”.3个月前是一个价格,2个月1个月1周前又是另一个价格:有…
正好刚帮某电信行业完成一个数据挖掘工作,其中的RFM模型还是有一定代表性,就再把数据挖掘RFM模型的建模思路细节与大家分享一下吧!手机充值业务是一项主要电信业务形式,客户的充值行为记录正好满足RFM模型的交易数据要求. 根据美国数据库营销研究所Arthur Hughes的研究,客户数据库中有三个神奇的要素,这三个要素构成了数据分析最好的指标:最近一次消费(Recency).消费频率(Frequency).消费金额(Monetary). 我早期两篇博文已详述了RFM思想和IBM Modeler操作…
本文转自知乎 作者:接地气的陈老师 ————————————————————————————————————————————————————— 有同学问:“为啥我做的RFM模型被客户/业务部门批斗,说做的是啥XX玩意?我是对着网上的教程做的呀” 答:冒着被众多卖网课的号喷死的风险,揭示一个真相,就是在网课里如果不加“模型”俩字是很难卖的动的.大家都喜欢看高大上的东西,所以一般教数据分析的课在描述性统计完了都直接上RFM. 如果说成:“你要对用户交易行为进行分段,解读业务含义”,就太搓矮土了,咋吸…
shingling算法用于计算两个文档的相似度,例如,用于网页去重.维基百科对w-shingling的定义如下: In natural language processing a w-shingling is a set of unique "shingles"—contiguous subsequences of tokens in a document —that can be used to gauge the similarity of two documents. The w…
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 一.基本概念 根据美国数据库营销研究所Arthur Hughes的研究,客户数据库中有三个神奇的要素,这三个要素构成了数据分析最好的指标:最近一次消费(Recency).消费频率(Frequency).消费金额(Monetary). RFM模型:R(Recency)表示客户最近一次购买的时间有多远,F(Frequency)表示客户在最近一段时间…
python信用评分卡(附代码,博主录制) https://study.163.com/course/introduction.htm?courseId=1005214003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share RFM模型---最有价值客户 评价一个客户是否好坏有上万个变量,但这些变量最终可降到三个维度,即RFM模型 模型通过一个客户的近期购买行为.购买的总体频率以及花了多少钱…
catalogue . 个人理解 . 基本使用 . MNIST(multiclass classification)入门 . 深入MNIST . 卷积神经网络:CIFAR- 数据集分类 . 单词的向量表示(Vector Representations of Words) . 循环神经网络(RNN).LSTM(Long-Short Term Memory, LSTM) . 用深度学习网络搭建一个聊天机器人 0. 个人理解 在学习的最开始,我在这里写一个个人对deep leanring和神经网络的粗…
三个月之前 NLP 课程结课,我们做的是命名实体识别的实验.在MSRA的简体中文NER语料(我是从这里下载的,非官方出品,可能不是SIGHAN 2006 Bakeoff-3评测所使用的原版语料)上训练NER模型,识别人名.地名和组织机构名.尝试了两种模型:一种是手工定义特征模板后再用CRF++开源包训练CRF模型:另一种是最近两年学术界比较流行的 BiLSTM-CRF 模型. 小白一枚,简单介绍一下模型和实验结果,BiLSTM-CRF 模型的数据和代码在GitHub上. 命名实体识别(Named…
随着消费及用户体验的需求升级.人货场的运营效率需求提升.人工智能技术的突破以及零售基础设施的变革等因素共同推动了第四次零售革命的到来,不仅在国内,国外一线巨头互联网亚马逊等企业都在研发无人驾驶.无人超市技术,京东也一直在无人科技方面不断推出新技术和新产品. 在竞争日显激烈的背景下,京东物流在2016年5月对物流实验室进化升级,成立了京东X事业部,专注于“互联网+物流”,致力于打造着眼未来的智能仓储物流系统.比如京东传闻中的四无产品:无人车.无人仓.无人机,当然这也少不了X事业部的大作—神秘又一直…
周五福利日活动是电信为回馈老用户而做的活动,其主要回馈老用户的方式是让用户免费领取对应的优惠券,意在提升老用户的忠诚度和活跃度.今日,为保证仓库备货优惠券资源充足,特别是5元话费券等,需要对该类优惠券领取效果进行预测,从而指导备货.经研究选用ARIMA算法建立预测模型,对5元话费券进行日领取量的短期预测.数据集收集了2019年1月到2019年2月5元话费券的日领取量数据,并根据此数据做时间序列分析并建立预测模型. 1.进行数据的加载 from statsmodels.tsa.stattools…
手写数字digits分类,这可是深度学习算法的入门练习.而且还有专门的手写数字MINIST库.opencv提供了一张手写数字图片给我们,先来看看 这是一张密密麻麻的手写数字图:图片大小为1000*2000,有0-9的10个数字,每5行为一个数字,总共50行,共有5000个手写数字.在opencv3.0版本中,图片存放位置为 /opencv/sources/samples/data/digits.png 我们首先要做的,就是把这5000个手写数字,一个个截取出来,每个数字块大小为20*20.直接将…
介绍Snowflake算法 SnowFlake算法是国际大公司Twitter的采用的一种生成分布式自增id的策略,这个算法产生的分布式id是足够我们我们中小公司在日常里面的使用了.我也是比较推荐这一种算法产生的分布式id的. 算法snowflake的生成的分布式id结构组成部分 算法snowflake生成id的结果是一个64bit大小的整数,它的结构如下图, 这里我么来讲一下这个结构:首先因为window是64位的,然后整数的时候第一位必须是0,所以最大的数值就是63位的111111111111…
  在文章NLP(十五)让模型来告诉你文本中的时间中,我们已经学会了如何利用kashgari模块来完成序列标注模型的训练与预测,在本文中,我们将会了解如何tensorflow-serving来部署模型.   在kashgari的官方文档中,已经有如何利用tensorflow-serving来部署模型的说明了,网址为:https://kashgari.bmio.net/advance-use/tensorflow-serving/ .   下面,本文将介绍tensorflow-serving以及如…
RFM模型是网点衡量当前用户价值和客户潜在价值的重要工具和手段.RFM是Rencency(最近一次消费),Frequency(消费频率).Monetary(消费金额) 消费指的是客户在店铺消费最近一次和上一次的时间间隔,理论上R值越小的客户是价值越高的客户,即对店铺的回购几次最有可能产生回应.目前网购便利,顾客已经有了更多的购买选择和更低的购买成本,去除地域的限制因素,客户非常容易流失,因此CRM操盘手想要提高回购率和留存率,需要时刻警惕R值. 消费频率是客户在固定时间内的购买次数(一般是1年)…
RFM模型 根据美国数据库营销研究所Arthur Hughes的研究,客户数据库中有3个神奇的要素,这3个要素构成了数据分析最好的指标: 最近一次消费 (Recency) 消费频率 (Frequency) 消费金额 (Monetary) 上面的三个标签通过字面意思比较好理解,顾名思义RFM模型中的,R=Recency,F=Frequency,M=Monetary RFM模型客户细分 1.数据筛选分组 为了得到客户最近一次消费(Recency).消费频率(Frequency).消费金额(Monet…
利用神经网络算法的C#手写数字识别(二)   本篇主要内容: 让项目编译通过,并能打开图片进行识别.   1. 从上一篇<利用神经网络算法的C#手写数字识别>中的源码地址下载源码与资源, 注意,两者都要下载,资源里有训练数据集. 2. 下载后源码项目用VS打开,第一遍是编译不过的,会提示参数不正确. 将资源中的DATA文件夹考入到编译目录下,如Bin\Debug下, 即可编译通过. 目录如下:   3. 上篇文中所述的打开一个图片并识别的功能在代码中是没有实现的. 本篇我们将在此项目中实现.…
利用神经网络算法的C#手写数字识别 转发来自云加社区,用于学习机器学习与神经网络 欢迎大家前往云+社区,获取更多腾讯海量技术实践干货哦~ 下载Demo - 2.77 MB (原始地址):handwritten_character_recognition.zip 下载源码 - 70.64 KB (原始地址) :nnhandwrittencharreccssource.zip 介绍 这是一篇基于Mike O'Neill 写的一篇很棒的文章:神经网络的手写字符识别(Neural Network for…
这里主要先介绍如何利用CORDIC算法计算固定角度\(\phi\)的\(cos(\phi)\).\(sin(\phi)\)值.参考了这两篇文章[1].[2]. 一般利用MATLAB计算三角函数时,用\(cos\)举例,只需要输入相应的\(cos(\phi)\)便自动计算出来了.但是如果是硬件处理或者没有那么方便的函数时,该如何计算\(cos(\phi)\)的值呢? 有一种最傻瓜的方式是用rom存储\(0^o\)到\(90^o\)所有的余弦值,然后用查表的方法计算,但随着精度要求的提升,需要存储的…
假设我长得很漂亮,拥有众多追求者,但是初出闺房的我对这世界上的男人毫无认知,那么该如何选择呢?这真是一个问题! 妈妈说,愿意为我花钱的男人未必爱我,但不愿意为我花钱的男人必定不爱我,而后传授了一套RFM模型,让我去规避渣男.拥抱幸福,听下来好像有点道理,在这里分享给各位美女帅哥. 什么是RFM模型 RFM对应三个单词: 1)Recency,最近一次消费,R的值越小,用户价值越高: 2)Frequency,消费频率,F的值越大,用户价值越高: 3)Monetary,消费金额,M的值越大,用户价值越…
寻找字符串中的最长回文序列和所有回文序列(正向和反向一样的序列,如aba,abba等)算是挺早以前提出的算法问题了,最近再刷Leetcode算法题的时候遇到了一个(题目),所以就顺便写下. 如果用正反向遍历的方法的话时间复杂度将会是O(N^2),而利用Manacher算法将会是O(N),在处理长序列的时候能显著提高速度. 算法原理 回文序列的左右是对称的,也就是说在找到一个回文序列的时候,回文序列的右半部份将会是左半部分的镜像,在符合一定条件的时候可以直接判断以当前字符为中心的回文序列的长度 以…
首先简单描述一下Apriori算法:Apriori算法分为频繁项集的产生和规则的产生. Apriori算法频繁项集的产生: 令ck为候选k-项集的集合,而Fk为频繁k-项集的集合. 1.首先通过单遍扫描数据集,确定每个项的支持度.一旦完成这一步,就可以得到所有频繁1-项集的集合F1 2.接下来,该算法将使用上一次迭代的发现的频繁(k-1)-项集,产生新的候选k-项集.候选的产生使用apriori-gen函数实现. 3.为了对候选项的支持度的计算,需要再扫描一遍数据集.使用子集函数确定包含在每一个…
RFM模型:R(Recency)表示客户最近一次购买的时间有多远,F(Frequency)表示客户在最近一段时间内购买的次数,M (Monetary)表示客户在最近一段时间内购买的金额.一般原始数据为3个字段:客户ID.购买时间.购买金额,用数据挖掘软件处理,加权(考虑权重)得到RFM得分,对得分排序,输出营销名单topN! 上图来自于@数据挖掘与数据分析 下面我们采用IBM Modeler 14.1版本操作RFM模型:(采用数据挖掘技术来分析RFM是一件简单的工作,因为软件非常智能化,或者说基…
图片霍夫变换拟合得到直线后,怎样获得直线上的像素点坐标? 这是我今天在图像处理学习中遇到的问题,霍夫变换采用的概率霍夫变换,所以拟合得到的直线信息其实是直线的两个端点的坐标,这样一个比较直接的思路就是利用DDA算法来获取. 一.算法简介 DDA算法是计算机图形学中最简单的绘制直线算法.其主要思想是由直线公式y = kx + b推导出来的. 我们已知直线段两个端点P0(x0,y0)和P1(x1,y1),就能求出 k 和 b . 在k,b均求出的条件下,只要知道一个x值,我们就能计算出一个y值.如果…
%SA:利用SA算法解决TSP(数据是14个虚拟城市的横纵坐标)问题——Jason niu X = [16.4700 96.1000 16.4700 94.4400 20.0900 92.5400 22.3900 93.3700 25.2300 97.2400 22.0000 96.0500 20.4700 97.0200 17.2000 96.2900 16.3000 97.3800 14.0500 98.1200 16.5300 97.3800 21.5200 95.5900 19.4100…
ArcGIS案例学习笔记-批量裁剪地理模型 联系方式:谢老师,135-4855-4328,xiexiaokui#qq.com 功能:空间数据的批量裁剪 优点:1.批量裁剪:任意多个目标数据,去裁剪任意多个原始数据. 项目中一次处理几千个数据,容量达到几10g.2.自动保存:自动分类,自动命名.3.使用简单:只要输入裁剪范围,目标数据,保存位置即可.4.稳定:多个循环,连续运行,不易出错.实际项目中连续运行数天,从未出错,稳定可靠. 模型构建过程 模型运行 联系方式:谢老师,135-4855-43…
背景:酵母会在一定的时期发生diauxic shift,有一些基因的表达上升,有一些基因表达被抑制,通过聚类算法,将基因表达的变化模式聚成6类. ORF Name R1.Ratio R2.Ratio R3.Ratio R4.Ratio R5.Ratio R6.Ratio R7.Ratio 1 YDR025W RPS18A 0.136061549576028 -0.111031312388744 -0.189033824390017 -0.782408564927373 -0.7570232465…