R语言决策树分类模型】的更多相关文章

rm(list=ls()) gc() memory.limit(4000) library(corrplot) library(rpart) data_health<-read.csv("D:/smart_data0608/smart_data_section_good_15.txt",header=FALSE,sep="\t",na.strings="None")#读健康数据 data_fault<-read.csv("D…
R语言︱LDA主题模型——最优主题...:https://blog.csdn.net/sinat_26917383/article/details/51547298#comments…
A IMA模型是一种著名的时间序列预测方法,主要是指将非平稳时间序列转化为平稳时间序列,然后将因变量仅对它的滞后值以及随机误差项的现值和滞后值进行回归所建立的模型.ARIMA模型根据原序列是否平稳以及回归中所含部分的不同,包括移动平均过程(MA).自回归过程(AR).自回归移动平均过程(ARMA)以及ARIMA过程.其中ARIMA(p,d,q)称为差分自回归移动平均模型,AR是自回归, p为自回归项: MA为移动平均,q为移动平均项数,d为时间序列成为平稳时所做的差分次数. 通常的建立ARIMA…
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:有一篇<有监督学习选择深度学习还是随机森林或支持向量机?>(作者Bio:SebastianRaschka)中提到,在日常机器学习工作或学习中,当我们遇到有监督学习相关问题时,不妨考虑下先用简单的假设空间(简单模型集合),例如线性模型逻辑回归.若效果不好,也即并没达到你的预期或评判效果基准时,再进行下换其他更复杂模型来实验. ----…
关于分类算法我们之前也讨论过了KNN.决策树.naivebayes.SVM.ANN.logistic回归.关于这么多的分类算法,我们自然需要考虑谁的表现更加的优秀. 既然要对分类算法进行评价,那么我们自然得有评价依据.到目前为止,我们讨论分类的有效性都是基于分类成功率来说的,但是这个指标科学吗?我们不妨考虑这么一个事实:一个样本集合里有95个正例,5个反例,分类器C1利用似然的思想将所有的实例均分成正例,分类成功率为95%:分类器C2成功分出了80个正例,3个反例,分类成功率仅83%.我们可以说…
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:在自己学LDA主题模型时候,发现该模型有这么几个未解决的问题: 1.LDA主题数量,多少个才是最优的. 2.作出主题之后,主题-主题,主题与词语之间关联如何衡量. 于是在查阅几位老师做的成果之后,将他们的成果撮合在一起.笔者发现R里面目前有两个包可以做LDA模型,是lda包+topicmodels包,两个包在使用的过程中,需要整理的数…
package Spark_MLlib import org.apache.spark.ml.Pipeline import org.apache.spark.ml.classification.{DecisionTreeClassificationModel, DecisionTreeClassifier} import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator import org.apache.spar…
R通过RODBC连接数据库 stats包中的st函数建立时间序列 funitRoot包中的unitrootTest函数检验单位根 forecast包中的函数进行预测 差分用timeSeries包中diff stats包中的acf和pacf处理自相关和偏自相关stats包中的arima函数模型…
请见Github博客:http://wuxichen.github.io/Myblog/timeseries/2014/09/02/RJavaonLinux.html…
数据还有很多没弄好,程序还没弄完全好. > read.xlsx("H:/ProjectPaper/论文/1.xlsx","Sheet1") > item<- read.xlsx("H:/ProjectPaper/论文/1.xlsx","Sheet1") > item<- ts(item,start=c(2014)) > plot.ts(item) > itemdiff<- dif…
R语言系列:生成数据 (2014-05-04 17:41:57) 转载▼ 标签: r语言 教育 分类: 生物信息 生成规则数据1.使用“:“,如x=1:10,注意该方法既可以递增也可以递减,如y=10:12.seq,有两种用法:①seq(起点,终点,步长); ②seq(length=9, from=1, to=5)    seq还有一种简写:seq(x)    #相当于1:length(x),但当length(x)为0时,返回integer(0)3.c(1,2,8)4.使用scan(),可以等待…
package Spark_MLlib import org.apache.spark.ml.Pipeline import org.apache.spark.ml.evaluation.RegressionEvaluator import org.apache.spark.ml.feature.{IndexToString, StringIndexer, VectorIndexer} import org.apache.spark.sql.SparkSession import org.apa…
PageRank算法R语言实现 Google搜索,早已成为我每天必用的工具,无数次惊叹它搜索结果的准确性.同时,我也在做Google的SEO,推广自己的博客.经过几个月尝试,我的博客PR到2了,外链也有几万个了.总结下来,还是感叹PageRank的神奇! 改变世界的算法,PageRank! 目录 PageRank算法介绍 PageRank算法原理 PageRank算法的R语言实现 1. PageRank算法介绍 PageRank是Google专有的算法,用于衡量特定网页相对于搜索引擎索引中的其他…
一.简介 决策树分类算法(decision tree)通过树状结构对具有某特征属性的样本进行分类.其典型算法包括ID3算法.C4.5算法.C5.0算法.CART算法等.每一个决策树包括根节点(root node),内部节点(internal node)以及叶子节点(leaf node). 根节点:表示第一个特征属性,只有出边没有入边,通常用矩形框表示. 内部节点:表示特征属性,有一条入边至少两条出边,通常用圆圈表示. 叶子节点:表示类别,只有一条入边没有出边,通常用三角表示. 决策树算法主要用于…
分类-回归树模型(CART)在R语言中的实现 CART模型 ,即Classification And Regression Trees.它和一般回归分析类似,是用来对变量进行解释和预测的工具,也是数据挖掘中的一种常用算法.如果因变量是连续数据,相对应的分析称为回归树,如果因变量是分类数据,则相应的分析称为分类树. 决策树是一种倒立的树结构,它由内部节点.叶子节点和边组成.其中最上面的一个节点叫根节点. 构造一棵决策树需要一个训练集,一些例子组成,每个例子用一些属性(或特征)和一个类别标记来描述.…
决策树ID3原理及R语言python代码实现(西瓜书) 摘要: 决策树是机器学习中一种非常常见的分类与回归方法,可以认为是if-else结构的规则.分类决策树是由节点和有向边组成的树形结构,节点表示特征或者属性, 而边表示的是属性值,边指向的叶节点为对应的分类.在对样本的分类过程中,由顶向下,根据特征或属性值选择分支,递归遍历直到叶节点,将实例分到叶节点对应的类别中. 决策树的学习过程就是构造出一个能正取分类(或者误差最小)训练数据集的且有较好泛化能力的树,核心是如何选择特征或属性作为节点, 通…
目录 1.调整模型参数来提高性能 1.1 创建简单的调整模型 2.2 定制调整参数 2.使用元学习来提高性能 2.1 集成学习(元学习)概述 2.2 bagging 2.3 boosting 2.4 随机森林 1)训练随机森林 2)评估随机森林性能 1.调整模型参数来提高性能 参数调整:调节模型合适的选项的过程,如股票C5.0决策树模型中的trials参数,神经网络中的调节节点.隐层数目,SVM中的核函数等等. caret包自动调整参数:train函数,为分类和回归的150种不同机器学习模型自动…
目录 1.评估分类方法的性能 1.1 混淆矩阵 1.2 其他评价指标 1)Kappa统计量 2)灵敏度与特异性 3)精确度与回溯精确度 4)F度量 1.3 性能权衡可视化(ROC曲线) 2.评估未来的性能 2.1 保持法 2.2 交叉验证 2.3 自助法抽样 1.评估分类方法的性能 拥有能够度量实用性而不是原始准确度的模型性能评价方法是至关重要的. 3种数据类型评价分类器:真实的分类值:预测的分类值:预测的估计概率.之前的分类算法案例只用了前2种. 对于单一预测类别,可将predict函数设定为…
目录 1.理解回归树和模型树 2.回归树和模型树应用示例 1)收集数据 2)探索和准备数据 3)训练数据 4)评估模型 5)提高模型性能 1.理解回归树和模型树 决策树用于数值预测: 回归树:基于到达叶节点的案例的平均值做出预测,没有使用线性回归的方法. 模型树:在每个叶节点,根据到达该节点的案例建立多元线性回归模型.因此叶节点数目越多,一颗模型树越大,比同等回归树更难理解,但模型可能更精确. 将回归加入到决策树: 分类决策树中,一致性(均匀性)由熵值来度量:数值决策树,则通过统计量(如方差.标…
在日常学习或工作中经常会使用线性回归模型对某一事物进行预测,例如预测房价.身高.GDP.学生成绩等,发现这些被预测的变量都属于连续型变量.然而有些情况下,被预测变量可能是二元变量,即成功或失败.流失或不流失.涨或跌等,对于这类问题,线性回归将束手无策.这个时候就需要另一种回归方法进行预测,即Logistic回归. 在实际应用中,Logistic模型主要有三大用途: 1)寻找危险因素,找到某些影响因变量的"坏因素",一般可以通过优势比发现危险因素: 2)用于预测,可以预测某种情况发生的概…
转自 雪晴网 [R]如何确定最适合数据集的机器学习算法 抽查(Spot checking)机器学习算法是指如何找出最适合于给定数据集的算法模型.本文中我将介绍八个常用于抽查的机器学习算法,文中还包括各个算法的 R 语言代码,你可以将其保存并运用到下一个机器学习项目中. 适用于你的数据集的最佳算法 你无法在建模前就知道哪个算法最适用于你的数据集.你必须通过反复试验的方法来寻找出可以解决你的问题的最佳算法,我称这个过程为 spot checking.我们所遇到的问题不是我应该采用哪个算法来处理我的数…
笔者寄语:本文中大多内容来自<数据挖掘之道>,本文为读书笔记.在刚刚接触机器学习的时候,觉得在监督学习之后,做一个混淆矩阵就已经足够,但是完整的机器学习解决方案并不会如此草率.需要完整的评价模型的方式. 常见的应用在监督学习算法中的是计算平均绝对误差(MAE).平均平方差(MSE).标准平均方差(NMSE)和均值等,这些指标计算简单.容易理解:而稍微复杂的情况下,更多地考虑的是一些高大上的指标,信息熵.复杂度和基尼值等等. 本篇可以用于情感挖掘中的监督式算法的模型评估,可以与博客对着看:R语言…
笔者寄语:机器学习中交叉验证的方式是主要的模型评价方法,交叉验证中用到了哪些指标呢? 交叉验证将数据分为训练数据集.测试数据集,然后通过训练数据集进行训练,通过测试数据集进行测试,验证集进行验证. 模型预测效果评价,通常用相对绝对误差.平均绝对误差.根均方差.相对平方根误差等指标来衡量. 只有在非监督模型中才会选择一些所谓"高大上"的指标如信息熵.复杂度和基尼值等等. 其实这类指标只是看起来老套但是并不"简单",<数据挖掘之道>中认为在监控.评估监督模型…
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- SOM自组织映射神经网络模型 的R语言实现 笔者前言: 最近发现这个被发明于1982年的方法在如今得到了极为广泛的应用,在提倡深度学习的时候,基于聚类的神经网络方法被众多人青睐.但是呢, 网上貌似木有人贴出关于SOM模型的R语言实现,我就抛砖引玉一下.一.SOM模型定义与优劣 自组织映射 ( Self Organization Map, SOM…
时间序列: (或称动态数列)是指将同一统计指标的数值按其发生的时间先后顺序排列而成的数列.时间序列分析的主要目的是根据已有的历史数据对未来进行预测.(百度百科) 主要考虑的因素: 1.长期趋势(Long-term trend) : 时间序列可能相当稳定或随时间呈现某种趋势. 时间序列趋势一般为线性的(linear),二次方程式的 (quadratic)或指数函数(exponential function). 2.季节性变动(Seasonal variation) 按时间变动,呈现重复性行为的序列…
最近在读<R语言与网站分析>,书中对分类.聚类算法的讲解通俗易懂,和数据挖掘理论一起看的话,有很好的参照效果. 然而,这么好的讲解,作者居然没提供对应的数据集.手痒之余,我自己动手整理了一个可用于分类算法的数据集(下载链接:csdn下载频道搜索“R语言与网站分析:数据集样例及分类算法实现”),并用R语言实现了朴素贝叶斯.SVM和人工神经网络分类. 数据集记录的是泰坦尼克号乘客的存活情况.数据集包括乘客的等级(class).年龄(age).性别(sex)和存活情况(survive),最终希望通过…
R语言代码 决策树的构建 rm(list=ls()) setwd("C:/Users/Administrator/Desktop/R语言与数据挖掘作业/实验3-决策树分类") #save print sink("tree1.txt") inputfile=read.csv(file="./bank-data.csv",header=TRUE) #age for(i in 1:length(inputfile$age)) inputfile$age…
作为机器学习中可解释性非常好的一种算法,决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法.由于这种决策分支画成图形很像一棵树的枝干,故称决策树.在机器学习中,决策树是一个预测模型,他代表的是对象属性与对象值之间的一种映射关系. 一.初识决策树 决策树是一种树形结构,一般的,一棵决策树包含一个根结点,若干个内部结点和若干个叶结点: 叶结点:树的一个方向的…
R语言利用ROCR评测模型的预测能力 说明 受试者工作特征曲线(ROC),这是一种常用的二元分类系统性能展示图形,在曲线上分别标注了不同切点的真正率与假正率.我们通常会基于ROC曲线计算处于曲线下方的面积AUC(area under curve),并以此峰面积来衡量相应分类模型的性能. 操作 继续使用telecom churn数据集作为样例数据集 library(caret) data(churn) str(churnTrain) churnTrain = churnTrain[,!names(…
R语言分类算法之随机森林 1.原理分析: 随机森林是通过自助法(boot-strap)重采样技术,从原始训练样本集N中有放回地重复随机抽取k个样本生成新的训练集样本集合,然后根据自助样本集生成k个决策树组成的随机森林,新数据的分类结果按照决策树投票多少形成的分数而定. 通俗的理解为由许多棵决策树组成的森林,而每个样本需要经过每棵树进行预测,然后根据所有决策树的预测结果最后来确定整个随机森林的预测结果.随机森林中的每一颗决策树都为二叉树,其生成遵循自顶向下的递归分裂原则,即从根节点开始依次对训练集…