8.SVM用于多分类】的更多相关文章

从前面SVM学习中可以看出来,SVM是一种典型的两类分类器.而现实中要解决的问题,往往是多类的问题.如何由两类分类器得到多类分类器,就是一个值得研究的问题. 以文本分类为例,现成的方法有很多,其中一劳永逸的方法,就是真的一次性考虑所有样本,并求解一个多目标函数的优化问题,一次性得到多个分类面,就像下图这样: 多个超平面把空间划分为多个区域,每个区域对应一个类别,给一篇文章,看它落在哪个区域就知道了它的分类. 只可惜这种算法还基本停留在纸面上,因为一次性求解的方法计算量实在太大,大到无法实用的地步…
SVM用于线性回归 方法分析 在样本数据集()中,不是简单的离散值,而是连续值.如在线性回归中,预测房价.与线性回归类型,目标函数是正则平方误差函数: 在SVM回归算法中,目的是训练出超平面,采用作为预测值.为了获得稀疏解,即计算超平面参数w,b不依靠所有样本数据,而是部分数据(如在SVM分类算法中,支持向量的定义),采用误差函数 误差函数定义为,如果预测值与真实值的差值小于阈值将不对此样本做惩罚,若超出阈值,惩罚量为. 下图为误差函数与平方误差函数的图形 目标函数 观察上述的误差函数的形式,可…
svm 是针对二分类问题, 如果要进行多分类, 无非就是多训练几个svm呗 OVR (one versus rest) 对于k个类别(k>2) 的情况, 训练k个svm, 其中, 第j个svm用于判断任意条数据是是属于类别j还是非类别j. 预测的时候, 具有最大值的 \(w_i^Tx + bi\) 表示该样本属于类别i. 假设样本有 3个类别, A, B, C, 则需要训练3个svm, 记为s1, s2, s3 然后输出一个样本x, 都要经过 s1, s2, s3, 则为 max(s1(x),…
用于文本分类的RNN-Attention网络 https://blog.csdn.net/thriving_fcl/article/details/73381217 Attention机制在NLP上最早是被用于seq2seq的翻译类任务中,如Neural Machine Translation by Jointly Learning to Align and Translate这篇文章所说. 之后在文本分类的任务中也用上Attention机制,这篇博客主要介绍Attention机制在文本分类任务…
将迁移学习用于文本分类 < Universal Language Model Fine-tuning for Text Classification> 2018-07-27 20:07:43 ttv56 阅读数 4552更多 分类专栏: 自然语言处理   版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/u014475479/article/details/81253506 本文发表于自然…
源地址:http://www.blogjava.net/zhenandaci/archive/2009/03/26/262113.html 从 SVM的那几张图可以看出来,SVM是一种典型的两类分类器,即它只回答属于正类还是负类的问题.而现实中要解决的问题,往往是多类的问题(少部分例外,例如垃圾邮件过滤,就只需要确定“是”还是“不是”垃圾邮件),比如文本分类,比如数字识别.如何由两类分类器得到多类分类器,就是一个值得研究的问题. 还以文本分类为例,现成的方法有很多,其中一种一劳永逸的方法,就是真…
转自:http://www.lining0806.com/%E5%B0%86svm%E7%94%A8%E4%BA%8E%E5%A4%9A%E7%B1%BB%E5%88%86%E7%B1%BB/ SVM是一种典型的二类分类器,是采用最大间隔化策略来确定特征空间中最优超平面的,也就是说它只能回答属于正类还是负类的问题.而现实中要解决的往往是多类分类问题,如何将一个二类分类器转换成一个多类分类器呢? 一.一对多方法 比如有k个类别,每次分类都把1个类别作为正样本,其余k-1个类别作为负样本,依次类推.…
SVM本身是一个二值分类器 SVM算法最初是为二值分类问题设计的,当处理多类问题时,就需要构造合适的多类分类器. 目前,构造SVM多类分类器的方法主要有两类 (1)直接法,直接在目标函数上进行修改,将多个分类面的参数求解合并到一个最优化问题中,通过求解该最优化问题“一次性”实现多类分类.这种方法看似简单,但其计算复杂度比较高,实现起来比较困难,只适合用于小型问题中: (2)间接法,主要是通过组合多个二分类器来实现多分类器的构造,常见的方法有one-against-one和one-against-…
SVM算法最初是为二值分类问题设计的,当处理多类问题时,就需要构造合适的多类分类器. 目前,构造SVM多类分类器的方法主要有两类:一类是直接法,直接在目标函数上进行修改,将多个分类面的参数求解合并到一个最优化问题中,通过求解该最优化问题"一次性"实现多类分类.这种方法看似简单,但其计算复杂度比较高,实现起来比较困难,只适合用于小型问题中:另一类是间接法,主要是通过组合多个二分类器来实现多分类器的构造,常见的方法有one-against-one和one-against-all两种. a.…
首先学习一下svm分类的使用. 主要有以下步骤: Loading and Visualizing Dataj Training Linear SVM Implementing Gaussian Kernel Training SVM with RBF Kernel 选择最优的C, sigma参数 画出边界线 线性keneral实现 C = 1; model = svmTrain(X, y, C, @linearKernel, 1e-3, 20); visualizeBoundaryLinear(…